Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMMUNOTHERAPY

Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7

Abstract

CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: mbdIL-7 endows CAR-T cells with superior in vivo tumor control.
Fig. 2: mbdIL-7 degradation activity is robust and reversible in vitro and in vivo controlling both surface IL-7 and pSTAT5 signaling.
Fig. 3: mbdIL-7 CAR have less differentiated product phenotype and maintain short-term in vitro activity to standard CAR-T cells.
Fig. 4: CAR19 mbdIL-7 have superior long-term proliferation potential.
Fig. 5: mbdIL-7 OFF-activity controls unchecked T cell expansion.

Similar content being viewed by others

Data availability

For original data, please contact mvmaus@mgh.harvard.edu.

References

  1. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol. 2019;16:372–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Majzner RG, Mackall CL. Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 2019;25:1341–55.

    CAS  PubMed  Google Scholar 

  5. Guedan S, Calderon H, Posey AD, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev. 2019;12:145–56.

    CAS  PubMed  Google Scholar 

  6. Alizadeh D, Wong RA, Yang X, Wang D, Pecoraro JR, Kuo C-F, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 2019;7:759–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Agliardi G, Liuzzi AR, Hotblack A, De Feo D, Núñez N, Stowe CL, et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nat Commun. 2021;12:444.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  8. Bell M, Gottschalk S. Engineered cytokine signaling to improve CAR T cell effector function. Front Immunol. 2021;12:684642.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang L, Morgan RA, D.Beane J, Zheng Z, Dudley ME, Kassim SH, et al. Tumor infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin Cancer Res J Am Assoc Cancer Res. 2015;21:2278–88.

    CAS  Google Scholar 

  10. Chmielewski M, Abken H. CAR T cells releasing IL-18 convert to T-bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 2017;21:3205–19.

    CAS  PubMed  Google Scholar 

  11. Shum T, Omer B, Tashiro H, Kruse RL, Wagner DL, Parikh K, et al. Constitutive signaling from an engineered IL-7 receptor promotes durable tumor elimination by tumor redirected T-cells. Cancer Discov. 2017;7:1238–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aspuria P-J, Vivona S, Bauer M, Semana M, Ratti N, McCauley S, et al. An orthogonal IL-2 and IL-2Rβ system drives persistence and activation of CAR T cells and clearance of bulky lymphoma. Sci Transl Med. 2021;13:eabg7565.

    CAS  PubMed  Google Scholar 

  13. Zhang Q, Hresko ME, Picton LK, Su L, Hollander MJ, Nunez-Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Neelapu SS, Tummala S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, et al. Chimeric antigen receptor T-cell therapy — assessment and management of toxicities. Nat Rev Clin Oncol. 2018;15:47–62.

    CAS  PubMed  Google Scholar 

  15. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25:625–38.

    CAS  PubMed  Google Scholar 

  16. Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011;11:330–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schluns KS, Kieper WC, Jameson SC, Lefrançois L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat Immunol. 2000;1:426–32.

    CAS  PubMed  Google Scholar 

  18. Adachi K, Kano Y, Nagai T, Okuyama N, Sakoda Y, Tamada K. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat Biotechnol. 2018;36:346–51.

    CAS  PubMed  Google Scholar 

  19. Zhou J, Jin L, Wang F, Zhang Y, Liu B, Zhao T. Chimeric antigen receptor T (CAR-T) cells expanded with IL-7/IL-15 mediate superior antitumor effects. Protein Cell. 2019;10:764–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Thomas KR, Allenspach EJ, Camp ND, Wray-Dutra MN, Khim S, Zielinska-Kwiatkowska A, et al. Activated interleukin-7 receptor signaling drives B-cell acute lymphoblastic leukemia in mice. Leukemia. 2022;36:42–57.

    CAS  PubMed  Google Scholar 

  21. Zenatti PP, Ribeiro D, Li W, Zuurbier L, Silva MC, Paganin M, et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011;43:932–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abraham N, Ma MC, Snow JW, Miners MJ, Herndier BG, Goldsmith MA. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene. 2005;24:5252–7.

    CAS  PubMed  Google Scholar 

  23. Bailey, SR, Vatsa, S, Larson, RC, Bouffard, AA, Scarfo, I, Kann, MC, et al. Blockade or deletion of IFNg reduces macrophage activation without compromising CAR-T function in hematologic malignancies. Blood Cancer Discov. 2021. https://doi.org/10.1158/2643-3230.BCD-21-0181

  24. Jan M, Scarfò I, Larson RC, Walker A, Schmidts A, Guirguis AA, et al. Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Sci Transl Med. 2021;13:eabb6295.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Scarfò I, Ormhøj M, Frigault MJ, Castano AP, Lorrey S, Bouffard AA, et al. Anti-CD37 chimeric antigen receptor T cells are active against B- and T-cell lymphomas. Blood. 2018;132:1495–506.

    PubMed  PubMed Central  Google Scholar 

  26. Sreekanth, V, Jan, M, Zhao, KT, Lim, D, Davis, JR, McConkey, M, et al. A molecular glue approach to control the half-life of CRISPR-based technologies. 2023. Preprint at https://doi.org/10.1101/2023.03.12.531757.

  27. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, et al. Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep. 2017;7:2193.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  28. Schmidts A, Marsh LC, Srivastava AA, Bouffard AA, Boroughs AC, Scarfò I, et al. Cell-based artificial APC resistant to lentiviral transduction for efficient generation of CAR-T cells from various cell sources. J Immunother Cancer. 2020;8:e000990.

    PubMed  PubMed Central  Google Scholar 

  29. Geng C-L, Chen J-Y, Song T-Y, Jung JH, Long M, Song M-F, et al. Lenalidomide bypasses CD28 co-stimulation to reinstate PD-1 immunotherapy by activating Notch signaling. Cell Chem Biol 2022;29:1260–.e8.

    CAS  PubMed  Google Scholar 

  30. Larson RC, Castano A, Bouffard AA, Kann MC, Schmidts A, Gallagher KM, et al. Abstract 556: Novel anti-TACI single and dual-targeting CAR T cells overcome BCMA antigen loss in multiple myeloma. Cancer Res. 2022;82:556.

    Google Scholar 

  31. Li S, Pal R, Monaghan SA, Schafer P, Ouyang H, Mapara M, et al. IMiD immunomodulatory compounds block C/EBPβ translation through eIF4E down-regulation resulting in inhibition of MM. Blood. 2011;117:5157–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu YX, Shi C-X, Bruins LA, Wang X, Riggs DL, Porter B, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood. Cancer J. 2019;9:1–12.

    Google Scholar 

  33. Liu K, Zhang D, Chojnacki J, Du Y, Fu H, Grant S, et al. Design and biological characterization of hybrid compounds of curcumin and thalidomide for multiple myeloma. Org Biomol Chem 2013;11:4757–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Holstein SA, Tong H, Hohl RJ. Differential activities of thalidomide and isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells. Leuk Res 2010;34:344–51.

    CAS  PubMed  Google Scholar 

  35. Mestermann K, Giavridis T, Weber J, Rydzek J, Frenz S, Nerreter T, et al. The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR T cells. Sci Transl Med. 2019;11:eaau5907.

    PubMed  PubMed Central  Google Scholar 

  36. Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372:eaba1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim MY, Jayasinghe R, Devenport JM, Ritchey JK, Rettig MP, O’Neal J, et al. A long-acting interleukin-7, rhIL-7-hyFc, enhances CAR T cell expansion, persistence, and anti-tumor activity. Nat Commun. 2022;13:3296.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  38. Li L, Li Q, Yan Z-X, Sheng L-S, Fu D, Xu P, et al. Transgenic expression of IL-7 regulates CAR-T cell metabolism and enhances in vivo persistence against tumor cells. Sci Rep. 2022;12:12506.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  39. Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019;20:1584–93.

    CAS  PubMed  Google Scholar 

  40. Hucks G, Rheingold SR. The journey to CAR T cell therapy: the pediatric and young adult experience with relapsed or refractory B-ALL. Blood Cancer J. 2019;9:10.

    PubMed  PubMed Central  Google Scholar 

  41. Nie Y, Lu W, Chen D, Tu H, Guo Z, Zhou X, et al. Mechanisms underlying CD19-positive ALL relapse after anti-CD19 CAR T cell therapy and associated strategies. Biomark Res. 2020;8:18.

    PubMed  PubMed Central  Google Scholar 

  42. Neelapu SS. CAR-T efficacy: is conditioning the key? Blood. 2019;133:1799–1800.

    CAS  PubMed  Google Scholar 

  43. Hirayama AV, Gauthier J, Hay KA, Voutsinas JM, Wu Q, Gooley T, et al. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood. 2019;133:1876–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Korell F, Schubert M-L, Sauer T, Schmitt A, Derigs P, Weber TF, et al. Infection complications after lymphodepletion and dosing of chimeric antigen receptor T (CAR-T) cell therapy in patients with relapsed/refractory acute lymphoblastic leukemia or B cell non-hodgkin lymphoma. Cancers. 2021;13:1684.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Melenhorst JJ, Chen GM, Wang M, Porter DL, Chen C, Collins MA, et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature. 2022;602:503–9.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  46. Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol. 2016;28:28–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Blaeschke F, Stenger D, Kaeuferle T, Willier S, Lotfi R, Kaiser AD, et al. Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia. Cancer Immunol Immunother CII. 2018;67:1053–66.

    CAS  PubMed  Google Scholar 

  48. Tantalo, Oliver DG, Scheidt AJ, von B, Harrison AJ, Mueller SN, et al. Understanding T cell phenotype for the design of effective chimeric antigen receptor T cell therapies. J Immunother Cancer. 2021;9:e002555.

    PubMed  PubMed Central  Google Scholar 

  49. Krönke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;523:183–8.

    PubMed  ADS  PubMed Central  Google Scholar 

  50. Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, et al. Target antigen density governs the efficacy of anti–CD20-CD28-CD3 ζ chimeric antigen receptor–modified effector CD8+ T cells. J Immunol 2015;194:911–20.

    CAS  PubMed  Google Scholar 

  51. Arcangeli S, Rotiroti MC, Bardelli M, Simonelli L, Magnani CF, Biondi A, et al. Balance of anti-CD123 chimeric antigen receptor binding affinity and density for the targeting of acute myeloid leukemia. Mol Ther 2017;25:1933–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen SM, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther 2017;25:2189–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gandhi AK, Kang J, Havens CG, Conklin T, Ning Y, Wu L, et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN). Br J Haematol. 2014;164:811–21.

    CAS  PubMed  Google Scholar 

  54. Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    PubMed  ADS  Google Scholar 

  55. Jan M, Sperling AS, Ebert BL. Cancer therapies based on targeted protein degradation - lessons learned with lenalidomide. Nat Rev Clin Oncol. 2021;18:401–17.

    PubMed  PubMed Central  Google Scholar 

  56. Works M, Soni N, Hauskins C, Sierra C, Baturevych A, Jones JC, et al. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Mol Cancer Ther. 2019;18:2246–57.

    CAS  PubMed  Google Scholar 

  57. Kuramitsu S, Ohno M, Ohka F, Shiina S, Yamamichi A, Kato A, et al. Lenalidomide enhances the function of chimeric antigen receptor T cells against the epidermal growth factor receptor variant III by enhancing immune synapses. Cancer Gene Ther. 2015;22:487–95.

    CAS  PubMed  Google Scholar 

  58. Carbonneau S, Sharma S, Peng L, Rajan V, Hainzl D, Henault M, et al. An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor expression and activity. Cell Chem Biol 2021;28:802–.e6.

    CAS  PubMed  Google Scholar 

  59. Chakravarti D, Caraballo LD, Weinberg BH, Wong WW. Inducible gene switches with memory in human T cells for cellular immunotherapy. ACS Synth Biol. 2019;8:1744–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen, TM, Deb, A, Kokkonda, P, Sreekanth, V, Tiwari, PK, Shoba, V, et al. Proteolysis targeting chimeras with reduced Off-targets. 2021. Preprint at https://doi.org/10.1101/2021.11.18.468552.

  61. Smole A, Benton A, Poussin MA, Eiva MA, Mezzanotte C, Camisa B, et al. Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer Cell. 2022;40:1470–87.e7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen GM, Frankel NW, Reddy NR, Bhargava HK, Yoshida MA, Stark SR, et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378:eaba1624.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037–42.

    CAS  PubMed  ADS  PubMed Central  Google Scholar 

  64. Cook, PJ, Yang, SJ, Uenishi, GI, Grimm, A, West, SE, Wang, L-J, et al. A chemically inducible IL-2 receptor signaling complex allows for effective in vitro and in vivo selection of engineered CD4+ T cells. Mol. Ther. J. Am. Soc. Gene Ther. 2023:S1525-0016 00255–1. https://doi.org/10.1016/j.ymthe.2023.04.021.

  65. Lin RJ, Nager AR, Park S, Sutton J, Lay C, Melton Z, et al. Design and validation of inducible TurboCARs with tunable induction and combinatorial cytokine signaling. Cancer Immunol Res. 2022;10:1069–83.

    CAS  PubMed  Google Scholar 

  66. Richman SA, Wang L-C, Moon EK, Khire UR, Albelda SM, Milone MC. Ligand-induced degradation of a CAR permits reversible remote control of CAR T cell activity in vitro and in vivo. Mol Ther. 2020;28:1600–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med. 2020;12:eaax7992.

    CAS  PubMed  Google Scholar 

  68. Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl Med. 2019;11:eaaw5680.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by R01CA238268 to MVM and NIH K08CA255932, Leukemia Research Foundation New Investigator Award, Damon Runyon Cancer Research Foundation Innovator Award, American Cancer Society Discovery Boost Grant, and Edward P. Evans Foundation Discovery Research Grant to MJ. Select figures created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

MCK, EMS, AJA, ICL, AAB, VMS, HNT, AT, and MJ performed the experiments; MCK and MJ analyzed the results and created the figures; RCL, MBL, and BLE provided critical expertise in immune-oncology and targeted protein degradation; MCK, MVM, and MJ designed the study; MCK, MVM, and MJ wrote the manuscript; and all other authors read, edited, and approved the final version of this manuscript.

Corresponding author

Correspondence to Marcela V. Maus.

Ethics declarations

Competing interests

MCK, MVM, and MJ are listed as inventors on patents related to this work and held by the Massachusetts General Hospital and Partners Health Care. BLE has received research funding from Celgene, Deerfield, Novartis, and Calico and consulting fees from GRAIL. He is a member of the scientific advisory board and shareholder for Neomorph Inc., TenSixteen Bio, Skyhawk Therapeutics, and Exo Therapeutics. MVM is an inventor on patents related to adoptive cell therapies, held by Massachusetts General Hospital (some licensed to Promab) and University of Pennsylvania (some licensed to Novartis). MVM holds equity in 2SeventyBio, Century Therapeutics, Genocea, Neximmune, Oncternal, and TCR2 and has served as a consultant for multiple companies involved in cell therapies. MJ has received consulting income from RA Ventures. MJ is an inventor on patents related to molecular switch control of genetically engineered immune effector cell therapies held by Mass General Brigham and the Broad Institute.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kann, M.C., Schneider, E.M., Almazan, A.J. et al. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 38, 590–600 (2024). https://doi.org/10.1038/s41375-023-02113-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02113-6

Search

Quick links