Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC LYMPHOCYTIC LEUKEMIA

ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia

Abstract

Chronic lymphocytic leukemia (CLL) is still an incurable disease, with many patients developing resistance to conventional and targeted therapies. To better understand the physiology of CLL and facilitate the development of innovative treatment options, we examined specific metabolic features in the tumor CLL B-lymphocytes. We observed metabolic reprogramming, characterized by a high level of mitochondrial oxidative phosphorylation activity, a low glycolytic rate, and the presence of C2- to C6-carnitine end-products revealing an unexpected, essential role for peroxisomal fatty acid beta-oxidation (pFAO). Accordingly, downmodulation of ACOX1 (a rate-limiting pFAO enzyme overexpressed in CLL cells) was enough to shift the CLL cells’ metabolism from lipids to a carbon- and amino-acid-based phenotype. Complete blockade of ACOX1 resulted in lipid droplet accumulation and caspase-dependent death in CLL cells, including those from individuals with poor cytogenetic and clinical prognostic factors. In a therapeutic translational approach, ACOX1 inhibition spared non-tumor blood cells from CLL patients but led to the death of circulating, BCR-stimulated CLL B-lymphocytes and CLL B-cells receiving pro-survival stromal signals. Furthermore, a combination of ACOX1 and BTK inhibitors had a synergistic killing effect. Overall, our results highlight a less-studied but essential metabolic pathway in CLL and pave the way towards the development of new, metabolism-based treatment options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the three major metabolic pathways involved in OXPHOS energy production in CLL.
Fig. 2: Primary CLL B-cells show higher levels of mitochondrial respiration and lower levels of glycolytic activity than healthy B-cells.
Fig. 3: pFAO contributes to metabolic rewiring in CLL.
Fig. 4: Modulation of ACOX1 and pFAO induces metabolic reprogramming and lipid droplet accumulation in CLL cells.
Fig. 5: ACOX1/pFAO inhibition induces ATP loss and selectively targets circulating, BCR-stimulated CLL B-cells, and CLL B-cells receiving pro-survival stromal signals.
Fig. 6: ACOX1/pFAO inhibition induced mitochondrion-mediated caspase-3-dependent apoptosis in primary CLL B-cells.
Fig. 7: A combination of ACOX1/pFAO and BTK inhibitors has a synergistic killing effect on circulating and BCR-stimulated primary CLL B-cells.

Similar content being viewed by others

Data availability

Data are available within the manuscript, figures, or supplementary information. Further correspondence and material requests should be addressed to the corresponding author. Source data are provided with this paper.

References

  1. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med. 2005;352:804–15.

    Article  CAS  PubMed  Google Scholar 

  2. Scarfò L, Ferreri AJ, Ghia P. Chronic lymphocytic leukaemia. Crit Rev Oncol Hematol. 2016;104:169–82.

    Article  PubMed  Google Scholar 

  3. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369:32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perini GF, Feres CCP, Teixeira LLC, Hamerschlak N. BCL-2 Inhibition As Treatment For Chronic Lymphocytic Leukemia. Curr Treat Options Oncol. 2021;22:66.

    Article  PubMed  Google Scholar 

  5. De Novellis D, Cacace F, Caprioli V, Wierda WG, Mahadeo KM, Tambaro FP. The TKI era in chronic leukemias. Pharmaceutics. 2021;13:2201.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vander Heiden MG, DeBerardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168:657–69.

    Article  PubMed Central  Google Scholar 

  7. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  ADS  Google Scholar 

  8. Chen Z, Simon-Molas H, Cretenet G, Valle-Argos B, Smith LD, Forconi F, et al. Characterization of metabolic alterations of chronic lymphocytic leukemia in the lymph node microenvironment. Blood. 2022;140:630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jitschin R, Hofmann AD, Bruns H, Giessl A, Bricks J, Berger J, et al. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood. 2014;123:2663–72.

    Article  CAS  PubMed  Google Scholar 

  10. Lu J, Böttcher M, Walther T, Mougiakakos D, Zenz T, Huber W. Energy metabolism is co-determined by genetic variants in chronic lymphocytic leukemia and influences drug sensitivity. Haematologica. 2019;104:1830–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Galicia-Vázquez G, Smith S, Aloyz R. Del11q-positive CLL lymphocytes exhibit altered glutamine metabolism and differential response to GLS1 and glucose metabolism inhibition. Blood Cancer J. 2018;8:13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, et al. Cationic amino acid transporter-1-mediated arginine uptake is essential for chronic lymphocytic leukemia cell proliferation and viability. Front Oncol. 2019;9:1268.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muggen AF, Pillai SY, Kil LP, van Zelm MC, van Dongen JJ, Hendriks RW, et al. Basal Ca(2+) signaling is particularly increased in mutated chronic lymphocytic leukemia. Leukemia. 2015;29:321–8.

    Article  CAS  PubMed  Google Scholar 

  14. Laubach K, Zhang J, Chen X. The p53 family: a role in lipid and iron metabolism. Front Cell Dev Biol. 2021;9:715974.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vangapandu HV, Havranek O, Ayres ML, Kaipparettu BA, Balakrishnan K, Wierda WG, et al. B-cell receptor signaling regulates metabolism in chronic lymphocytic leukemia. Mol Cancer Res. 2017;15:1692–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nie Y, Yun X, Zhang Y, Wang X. Targeting metabolic reprogramming in chronic lymphocytic leukemia. Exp Hematol Oncol. 2022;11:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thurgood LA, Best OG, Rowland A, Lower KM, Brooks DA, Kuss BJ. Lipid uptake in chronic lymphocytic leukemia. Exp Hematol. 2022;106:58–67.

    Article  CAS  PubMed  Google Scholar 

  18. Friedman DR. Lipids and their effects in chronic lymphocytic leukemia. EBioMedicine. 2017;15:2–3.

    Article  PubMed  Google Scholar 

  19. Rozovski U, Grgurevic S, Bueso-Ramos C, Harris DM, Li P, Liu Z, et al. Aberrant LPL expression, driven by STAT3, mediates free fatty acid metabolism in CLL cells. Mol Cancer Res. 2015;13:944–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bilban M, Heintel D, Scharl T, Woelfel T, Auer MM, Porpaczy E, et al. Deregulated expression of fat and muscle genes in B-cell chronic lymphocytic leukemia with high lipoprotein lipase expression. Leukemia. 2006;20:1080–8.

    Article  CAS  PubMed  Google Scholar 

  21. Galicia-Vázquez G, Aloyz R. Ibrutinib resistance is reduced by an inhibitor of fatty acid oxidation in primary CLL lymphocytes. Front Oncol. 2018;8:411.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rombout A, Verhasselt B, Philippé J. Lipoprotein lipase in chronic lymphocytic leukemia: function and prognostic implications. Eur J Haematol. 2016;97:409–15.

    Article  CAS  PubMed  Google Scholar 

  23. Oppezzo P, Vasconcelos Y, Settegrana C, Jeannel D, Vuillier F, Legarff-Tavernier M, et al. The LPL/ADAM29 expression ratio is a novel prognosis indicator in chronic lymphocytic leukemia. Blood. 2005;106:650–7.

    Article  CAS  PubMed  Google Scholar 

  24. Liu PP, Liu J, Jiang WQ, Carew JS, Ogasawara MA, Pelicano H, et al. Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene. 2016;35:5663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McCaw L, Shi Y, Wang G, Li YJ, Spaner DE. Low density lipoproteins amplify cytokine-signaling in chronic lymphocytic leukemia cells. EBioMedicine. 2017;15:24–35.

    Article  PubMed  Google Scholar 

  26. Talley JT, Mohiuddin SS. Biochemistry, fatty acid oxidation. StatPearls. © 2023, StatPearls Publishing LLC. Treasure Island FL, 2023.

  27. Houten SM, Wanders RJA, Ranea-Robles P. Metabolic interactions between peroxisomes and mitochondria with a special focus on acylcarnitine metabolism. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Houten SM, Violante S, Ventura FV, Wanders RJ. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders. Annu Rev Physiol. 2016;78:23–44.

    Article  CAS  PubMed  Google Scholar 

  29. Ding L, Sun W, Balaz M, He A, Klug M, Wieland S, et al. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat Metab. 2021;3:1648–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Violante S, Achetib N, van Roermund CWT, Hagen J, Dodatko T, Vaz FM, et al. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4. FASEB J. 2019;33:4355–64.

    Article  CAS  PubMed  Google Scholar 

  31. Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal beta-oxidation-a metabolic pathway with multiple functions. Biochim Biophys Acta. 2006;1763:1413–26.

    Article  CAS  PubMed  Google Scholar 

  32. Pallasch CP, Schwamb J, Königs S, Schulz A, Debey S, Kofler D, et al. Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia. 2008;22:585–92.

    Article  CAS  PubMed  Google Scholar 

  33. Zheng FM, Chen WB, Qin T, Lv LN, Feng B, Lu YL, et al. ACOX1 destabilizes p73 to suppress intrinsic apoptosis pathway and regulates sensitivity to doxorubicin in lymphoma cells. BMB Rep. 2019;52:566–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen S, Faouzi S, Souquere S, Roy S, Routier E, Libenciuc C, et al. Melanoma persister cells are tolerant to BRAF/MEK inhibitors via ACOX1-mediated fatty acid oxidation. Cell Rep. 2020;33:108421.

    Article  CAS  PubMed  Google Scholar 

  35. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018;131:2745–60.

    Article  CAS  PubMed  Google Scholar 

  36. Cosson A, Chapiro E, Bougacha N, Lambert J, Herbi L, Cung HA, et al. Gain in the short arm of chromosome 2 (2p+) induces gene overexpression and drug resistance in chronic lymphocytic leukemia: analysis of the central role of XPO1. Leukemia. 2017;31:1625–29.

    Article  CAS  PubMed  Google Scholar 

  37. Hertlein E, Beckwith KA, Lozanski G, Chen TL, Towns WH, Johnson AJ, et al. Characterization of a new chronic lymphocytic leukemia cell line for mechanistic in vitro and in vivo studies relevant to disease. PLoS One. 2013;8:e76607.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinez-Torres AC, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCgamma1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Quijada-Álamo M, Hernández-Sánchez M, Rodríguez-Vicente AE, Pérez-Carretero C, Rodríguez-Sánchez A, Martín-Izquierdo M, et al. Biological significance of monoallelic and biallelic BIRC3 loss in del(11q) chronic lymphocytic leukemia progression. Blood Cancer J. 2021;11:127.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Silva Barcelos EC, Rompietti C, Adamo FM, Dorillo E, De Falco F, Del Papa B, et al. NOTCH1-mutated chronic lymphocytic leukemia displays high endoplasmic reticulum stress response with druggable potential. Front Oncol. 2023;13:1218989.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vangapandu HV, Ayres ML, Bristow CA, Wierda WG, Keating MJ, Balakrishnan K, et al. The stromal microenvironment modulates mitochondrial oxidative phosphorylation in chronic lymphocytic leukemia cells. Neoplasia. 2017;19:762–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49:W388–W96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, et al. The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia. Nat Med. 2018;24:868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu L, Huang D, Hu Q, Wu J, Wang Y, Feng J. Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Br J Nutr. 2015;113:1835–43.

    Article  CAS  PubMed  Google Scholar 

  45. Vanhove GF, Van Veldhoven PP, Fransen M, Denis S, Eyssen HJ, Wanders RJ, et al. The CoA esters of 2-methyl-branched chain fatty acids and of the bile acid intermediates di- and trihydroxycoprostanic acids are oxidized by one single peroxisomal branched chain acyl-CoA oxidase in human liver and kidney. J Biol Chem. 1993;268:10335–44.

    Article  CAS  PubMed  Google Scholar 

  46. Wanders RJ, Vreken P, Ferdinandusse S, Jansen GA, Waterham HR, van Roermund CW, et al. Peroxisomal fatty acid alpha- and beta-oxidation in humans: enzymology, peroxisomal metabolite transporters and peroxisomal diseases. Biochem Soc Trans. 2001;29:250–67.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng J, Deng S, Wang Y, Li P, Tang L, Pang Y. Specific inhibition of Acyl-CoA Oxidase-1 by an acetylenic acid improves hepatic lipid and reactive oxygen species (ROS) metabolism in rats fed a high fat diet. J Biol Chem. 2017;292:3800–09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wanders RJ. Metabolic functions of peroxisomes in health and disease. Biochimie. 2014;98:36–44.

    Article  CAS  PubMed  Google Scholar 

  49. Lodhi IJ, Semenkovich CF. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metab. 2014;19:380–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Di Cara F, Savary S, Kovacs WJ, Kim P, Rachubinski RA. The peroxisome: an up-and-coming organelle in immunometabolism. Trends Cell Biol. 2023;33:70–86.

    Article  PubMed  Google Scholar 

  51. Jitschin R, Braun M, Qorraj M, Saul D, Le Blanc K, Zenz T, et al. Stromal cell-mediated glycolytic switch in CLL cells involves Notch-c-Myc signaling. Blood. 2015;125:3432–6.

    Article  CAS  PubMed  Google Scholar 

  52. Schwamb J, Feldhaus V, Baumann M, Patz M, Brodesser S, Brinker R, et al. B-cell receptor triggers drug sensitivity of primary CLL cells by controlling glucosylation of ceramides. Blood. 2012;120:3978–85.

    Article  CAS  PubMed  Google Scholar 

  53. Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell. 2019;36:369–84.e13.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bosc C, Saland E, Bousard A, Gadaud N, Sabatier M, Cognet G, et al. Mitochondrial inhibitors circumvent adaptive resistance to venetoclax and cytarabine combination therapy in acute myeloid leukemia. Nat Cancer. 2021;2:1204–23.

    Article  CAS  PubMed  Google Scholar 

  55. Caro P, Kishan AU, Norberg E, Stanley IA, Chapuy B, Ficarro SB, et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell. 2012;22:547–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goto M, Miwa H, Shikami M, Tsunekawa-Imai N, Suganuma K, Mizuno S, et al. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest. 2014;32:241–7.

    Article  CAS  PubMed  Google Scholar 

  57. Tili E, Michaille JJ, Luo Z, Volinia S, Rassenti LZ, Kipps TJ, et al. The down-regulation of miR-125b in chronic lymphocytic leukemias leads to metabolic adaptation of cells to a transformed state. Blood. 2012;120:2631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heintel D, Kienle D, Shehata M, Kröber A, Kroemer E, Schwarzinger I, et al. High expression of lipoprotein lipase in poor risk B-cell chronic lymphocytic leukemia. Leukemia. 2005;19:1216–23.

    Article  CAS  PubMed  Google Scholar 

  59. Gugiatti E, Tenca C, Ravera S, Fabbi M, Ghiotto F, Mazzarello AN, et al. A reversible carnitine palmitoyltransferase (CPT1) inhibitor offsets the proliferation of chronic lymphocytic leukemia cells. Haematologica. 2018;103:e531–e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan DE, et al. A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med. 2012;18:1350–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Riffelmacher T, Clarke A, Richter FC, Stranks A, Pandey S, Danielli S, et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity. 2017;47:466–80.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ren Z, Chen S, Pak S, Guo L. A mechanism of perhexiline’s cytotoxicity in hepatic cells involves endoplasmic reticulum stress and p38 signaling pathway. Chem Biol Interact. 2021;334:109353.

    Article  CAS  PubMed  Google Scholar 

  63. Pekkinen J, Olli K, Huotari A, Tiihonen K, Keski-Rahkonen P, Lehtonen M, et al. Betaine supplementation causes increase in carnitine metabolites in the muscle and liver of mice fed a high-fat diet as studied by nontargeted LC-MS metabolomics approach. Mol Nutr Food Res. 2013;57:1959–68.

    Article  CAS  PubMed  Google Scholar 

  64. Piszcz J, Armitage EG, Ferrarini A, Rupérez FJ, Kulczynska A, Bolkun L, et al. To treat or not to treat: metabolomics reveals biomarkers for treatment indication in chronic lymphocytic leukaemia patients. Oncotarget. 2016;7:22324–38.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Divakaruni AS, Hsieh WY, Minarrieta L, Duong TN, Kim KKO, Desousa BR, et al. Etomoxir inhibits macrophage polarization by disrupting CoA homeostasis. Cell Metab. 2018;28:490–503.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, et al. Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation. Cell Metab. 2018;28:504–15.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ricciardi MR, Mirabilii S, Allegretti M, Licchetta R, Calarco A, Torrisi MR, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood. 2015;126:1925–9.

    Article  CAS  PubMed  Google Scholar 

  68. Rufer AC, Thoma R, Benz J, Stihle M, Gsell B, De Roo E, et al. The crystal structure of carnitine palmitoyltransferase 2 and implications for diabetes treatment. Structure. 2006;14:713–23.

    Article  CAS  PubMed  Google Scholar 

  69. Kim S, Lee Y, Koo JS. Differential expression of lipid metabolism-related proteins in different breast cancer subtypes. PLoS One. 2015;10:e0119473.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Dahabieh MS, Ha Z, Di Pietro E, Nichol JN, Bolt AM, Goncalves C, et al. Peroxisomes protect lymphoma cells from HDAC inhibitor-mediated apoptosis. Cell Death Differ. 2017;24:1912–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Burger JA, Landau DA, Taylor-Weiner A, Bozic I, Zhang H, Sarosiek K, et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat Commun. 2016;7:11589.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jondreville L, Dehgane L, Doualle C, Smagghe L, Grange B, Davi F, et al. del(8p) and TNFRSF10B loss are associated with a poor prognosis and resistance to fludarabine in chronic lymphocytic leukemia. Leukemia. 2023;37:2221–30.

    Article  CAS  PubMed  Google Scholar 

  73. Wang E, Mi X, Thompson MC, Montoya S, Notti RQ, Afaghani J, et al. Mechanisms of resistance to noncovalent Bruton’s tyrosine kinase inhibitors. N Engl J Med. 2022;386:735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sharon D, Cathelin S, Mirali S, Di Trani JM, Yanofsky DJ, Keon KA, et al. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci Transl Med. 2019;11:eaax2863.

    Article  CAS  PubMed  Google Scholar 

  75. Ali H, Kobayashi M, Morito K, Hasi RY, Aihara M, Hayashi J, et al. Peroxisomes attenuate cytotoxicity of very long-chain fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids. 2023;1868:159259.

    Article  CAS  PubMed  Google Scholar 

  76. Moreno-Fernandez ME, Giles DA, Stankiewicz TE, Sheridan R, Karns R, Cappelletti M, et al. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight. 2018;3:e93626.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis. 2012;17:989–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Broséus J, Hergalant S, Vogt J, Tausch E, Kreuz M, Mottok A, et al. Molecular characterization of Richter syndrome identifies de novo diffuse large B-cell lymphomas with poor prognosis. Nat Commun. 2023;14:309.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Association Laurette Fugain (ALF 2020/08), Ligue Contre le Cancer-Comité de Paris (RS20/75-66 and RS19/75-59), Cancéropôle IDF (2021-1-EMERG-49-INSERM 6-1), and GEFLUC-Les Entreprises contre le Cancer, Paris Ile de France support this work. M. T. received PhD fellowships from SIRIC-CURAMUS (Cancer United research Associating Medecine, University and Society; grant reference: INCa-DGOS-INSERM_12560 and INCa-DGOS-INSERM-ITMO Cancer_18010) and Société Française d’Hématologie (SFH). M. A. holds a PhD support from Université Paris-Saclay. L.D. and K. D. received fellowships from SIRIC-CURAMUS. The authors thank Dr. Anne-Cécile Boulay (Center for Interdisciplinary Research in Biology, College de France) for statistical advice and Noémie Robil (GenoSplice technology) for RNAseq bioinformatics analyses. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MT conceived and performed CLL experimental work, analyzed the data, and helped to write the manuscript. MA and LD conceived and performed CLL experimental work and analyzed the data. IN performed metabolomic studies, analyzed the data, and helped in metabolomic profile presentation. KD performed CLL/stromal cell coculture approaches and analyzed the data. CI performed electronic microscopy and analyzed the results. AB performed immunofluorescence and analyzed the results. DR-W and KM provided CLL samples and critical advice. HM-B and BB provided critical advice on the work and the manuscript. BS conceived and performed electronic microscopy work, and analyzed the data. EC performed cytogenetic analysis, completed the mutational status and karyotype of the CLL patients, and provided critical advice throughout the study. FN-K provided CLL samples, performed cytogenetic analysis, and provided critical advice throughout the study. DG conceived and supervised experimental work, analyzed the data, provided critical advice throughout the study, and helped to write the manuscript. SAS conceived and supervised all aspects of the project, designed experiments, interpreted the data, and wrote the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Santos A. Susin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Patient samples were collected after informed consent according to the Declaration of Helsinki.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tannoury, M., Ayoub, M., Dehgane, L. et al. ACOX1-mediated peroxisomal fatty acid oxidation contributes to metabolic reprogramming and survival in chronic lymphocytic leukemia. Leukemia 38, 302–317 (2024). https://doi.org/10.1038/s41375-023-02103-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02103-8

Search

Quick links