Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax

Abstract

We identified activin A receptor type I (ACVR1), a member of the TGF-β superfamily, as a factor favoring acute myeloid leukemia (AML) growth and a new potential therapeutic target. ACVR1 is overexpressed in FLT3-mutated AML and inhibition of ACVR1 expression sensitized AML cells to FLT3 inhibitors. We developed a novel ACVR1 inhibitor, TP-0184, which selectively caused growth arrest in FLT3-mutated AML cell lines. Molecular docking and in vitro kinase assays revealed that TP-0184 binds to both ACVR1 and FLT3 with high affinity and inhibits FLT3/ACVR1 downstream signaling. Treatment with TP-0184 or in combination with BCL2 inhibitor, venetoclax dramatically inhibited leukemia growth in FLT3-mutated AML cell lines and patient-derived xenograft models in a dose-dependent manner. These findings suggest that ACVR1 is a novel biomarker and plays a role in AML resistance to FLT3 inhibitors and that FLT3/ACVR1 dual inhibitor TP-0184 is a novel potential therapeutic tool for AML with FLT3 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACVR1 mRNA is overexpressed in AML patients with FLT3-ITD mutations, and its expression is further enhanced by FLT3 inhibitors.
Fig. 2: ACVR1 knockdown sensitizes FLT3-ITD–mutated AML cells to FLT3 inhibitors.
Fig. 3: TP-0184 inhibits cell proliferation in FLT3-mutated AML cells and interacts strongly with FLT3.
Fig. 4: TP-0184 inhibits FLT3- and ACVR1-mediated downstream signaling pathways in FLT3-ITD–mutated AML.
Fig. 5: TP-0184 inhibits serine biosynthesis in FLT3-mutated AML cells.
Fig. 6: TP-0184 inhibits leukemia growth in FLT3-ITD–mutated AML cell line xenograft and PDX models.
Fig. 7: TP-0184 and venetoclax synergistically inhibit the proliferation of FLT3-ITD–mutated cell lines and leukemia growth in vivo.

Similar content being viewed by others

Data availability

RNA-seq data is deposited in NCBI’s Gene Expression Omnibus (GEO) and are accessible through GEO series accession code GSE228427. Publicly available datasets, 2 datasets from TCGA and 1 dataset from OHSU, are available in cBioPortal.org. All of the data supporting the findings of this study are available from the corresponding author on reasonable request.

References

  1. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P, et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood. 1996;87:1089–96.

    CAS  PubMed  Google Scholar 

  2. Bolouri H, Farrar JE, Triche T Jr, Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24:103–12.

    CAS  PubMed  Google Scholar 

  3. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid Leukemia. N Engl J Med. 2016;374:2209–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100:1532–42.

    CAS  PubMed  Google Scholar 

  5. Yanada M, Matsuo K, Suzuki T, Kiyoi H, Naoe T. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia. 2005;19:1345–9.

    CAS  PubMed  Google Scholar 

  6. Daver N, Venugopal S, Ravandi F. FLT3 mutated acute myeloid leukemia: 2021 treatment algorithm. Blood Cancer J. 2021;11:104.

    PubMed  PubMed Central  Google Scholar 

  7. Larrosa-Garcia M, Baer MR. FLT3 inhibitors in acute myeloid Leukemia: current status and future directions. Mol Cancer Ther. 2017;16:991–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ueno Y, Mori M, Kamiyama Y, Saito R, Kaneko N, Isshiki E, et al. Evaluation of gilteritinib in combination with chemotherapy in preclinical models of FLT3-ITD(+) acute myeloid leukemia. Oncotarget. 2019;10:2530–45.

    PubMed  PubMed Central  Google Scholar 

  9. Small D. Targeting FLT3 for the treatment of leukemia. Semin Hematol. 2008;45:S17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Singh Mali R, Zhang Q, DeFilippis RA, Cavazos A, Kuruvilla VM, Raman J, et al. Venetoclax combines synergistically with FLT3 inhibition to effectively target leukemic cells in FLT3-ITD+ acute myeloid leukemia models. Haematologica. 2021;106:1034–46.

    PubMed  Google Scholar 

  11. Smith CC, Zhang C, Lin KC, Lasater EA, Zhang Y, Massi E, et al. Characterizing and overriding the structural mechanism of the quizartinib-resistant FLT3 “Gatekeeper” F691L mutation with PLX3397. Cancer Discov. 2015;5:668–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Eguchi M, Minami Y, Kuzume A, Chi S. Mechanisms underlying resistance to FLT3 inhibitors in acute myeloid leukemia. Biomedicines. 2020;8:245.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith CC, Paguirigan A, Jeschke GR, Lin KC, Massi E, Tarver T, et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood. 2017;130:48–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor KR, Mackay A, Truffaux N, Butterfield Y, Morozova O, Philippe C, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014;46:457–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Carvalho D, Taylor KR, Olaciregui NG, Molinari V, Clarke M, Mackay A, et al. ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Commun Biol. 2019;2:156.

    PubMed  PubMed Central  Google Scholar 

  16. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao B, Pritchard JR. Inherited disease genetics improves the identification of cancer-associated genes. PLoS Genet. 2016;12:e1006081.

    PubMed  PubMed Central  Google Scholar 

  18. Taylor KR, Vinci M, Bullock AN, Jones C. ACVR1 mutations in DIPG: lessons learned from FOP. Cancer Res. 2014;74:4565–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Voeltzel T, Flores-Violante M, Zylbersztejn F, Lefort S, Billandon M, Jeanpierre S, et al. A new signaling cascade linking BMP4, BMPR1A, ΔNp73 and NANOG impacts on stem-like human cell properties and patient outcome. Cell Death Dis. 2018;9:1011.

    PubMed  PubMed Central  Google Scholar 

  20. Breitenbuecher F, Markova B, Kasper S, Carius B, Stauder T, Böhmer FD, et al. A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML. Blood. 2009;113:4063–73.

    CAS  PubMed  Google Scholar 

  21. Bagrintseva K, Geisenhof S, Kern R, Eichenlaub S, Reindl C, Ellwart JW, et al. FLT3-ITD-TKD dual mutants associated with AML confer resistance to FLT3 PTK inhibitors and cytotoxic agents by overexpression of Bcl-x(L). Blood. 2005;105:3679–85.

    CAS  PubMed  Google Scholar 

  22. Kohl TM, Hellinger C, Ahmed F, Buske C, Hiddemann W, Bohlander SK, et al. BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia. 2007;21:1763–72.

    CAS  PubMed  Google Scholar 

  23. Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114:5034–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu XB, Feng X, Chang QM, Zhang CW, Wang ZF, Liu J, et al. Cross-talk among AFAP1-AS1, ACVR1 and microRNA-384 regulates the stemness of pancreatic cancer cells and tumorigenicity in nude mice. J Exp Clin Cancer Res. 2019;38:107.

    PubMed  PubMed Central  Google Scholar 

  25. Li L, Liu Y, Guo Y, Liu B, Zhao Y, Li P, et al. Regulatory MiR-148a-ACVR1/BMP circuit defines a cancer stem cell-like aggressive subtype of hepatocellular carcinoma. Hepatology. 2015;61:574–84.

    CAS  PubMed  Google Scholar 

  26. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cancer Genome Atlas Research N, Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Google Scholar 

  28. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell. 2018;173:291–304.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tang R, Hirsch P, Fava F, Lapusan S, Marzac C, Teyssandier I, et al. High Id1 expression is associated with poor prognosis in 237 patients with acute myeloid leukemia. Blood. 2009;114:2993–3000.

    CAS  PubMed  Google Scholar 

  30. Williams E, Bullock AN. Structural basis for the potent and selective binding of LDN-212854 to the BMP receptor kinase ALK2. Bone. 2018;109:251–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kawase T, Nakazawa T, Eguchi T, Tsuzuki H, Ueno Y, Amano Y, et al. Effect of Fms-like tyrosine kinase 3 (FLT3) ligand (FL) on antitumor activity of gilteritinib, a FLT3 inhibitor, in mice xenografted with FL-overexpressing cells. Oncotarget. 2019;10:6111–23.

    PubMed  PubMed Central  Google Scholar 

  32. Ma J, Zhao S, Qiao X, Knight T, Edwards H, Polin L, et al. Inhibition of Bcl-2 synergistically enhances the antileukemic activity of midostaurin and gilteritinib in preclinical models of FLT3-mutated acute myeloid Leukemia. Clin Cancer Res. 2019;25:6815–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsai CL, Tsai CN, Lin CY, Chen HW, Lee YS, Chao A, et al. Secreted stress-induced phosphoprotein 1 activates the ALK2-SMAD signaling pathways and promotes cell proliferation of ovarian cancer cells. Cell Rep. 2012;2:283–93.

    CAS  PubMed  Google Scholar 

  34. Herrera B, van Dinther M, Ten Dijke P, Inman GJ. Autocrine bone morphogenetic protein-9 signals through activin receptor-like kinase-2/Smad1/Smad4 to promote ovarian cancer cell proliferation. Cancer Res. 2009;69:9254–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi S. Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications. J Hematol Oncol. 2011;4:13.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W. Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol. 2009;2:23.

    PubMed  PubMed Central  Google Scholar 

  37. Li D, Li T, Shang Z, Zhao L, Xu Q, Tan J, et al. Combined inhibition of Notch and FLT3 produces synergistic cytotoxic effects in FLT3/ITD(+) acute myeloid leukemia. Signal Transduct Target Ther. 2020;5:21.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao T, Jiang N, Liao H, Shuai X, Su J, Zheng Q. The FLT3-ITD mutation and the expression of its downstream signaling intermediates STAT5 and Pim-1 are positively correlated with CXCR4 expression in patients with acute myeloid leukemia. Sci Rep. 2019;9:12209.

    PubMed  PubMed Central  Google Scholar 

  39. Park IK, Mundy-Bosse B, Whitman SP, Zhang X, Warner SL, Bearss DJ, et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia. 2015;29:2382–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumas PY, Naudin C, Martin-Lannerée S, Izac B, Casetti L, Mansier O, et al. Hematopoietic niche drives FLT3-ITD acute myeloid leukemia resistance to quizartinib via STAT5-and hypoxia-dependent upregulation of AXL. Haematologica. 2019;104:2017–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014;46:451–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Martelotto LG, Baslan T, Kendall J, Geyer FC, Burke KA, Spraggon L, et al. Whole-genome single-cell copy number profiling from formalin-fixed paraffin-embedded samples. Nat Med. 2017;23:376–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rooney L, Jones C. Recent advances in ALK2 inhibitors. ACS Omega. 2021;6:20729–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mori M, Kaneko N, Ueno Y, Yamada M, Tanaka R, Saito R, et al. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia. Invest New Drugs. 2017;35:556–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McMahon CM, Ferng T, Canaani J, Wang ES, Morrissette J, Eastburn DJ, et al. Clonal selection with RAS pathway activation mediates secondary clinical resistance to selective FLT3 inhibition in acute myeloid Leukemia. Cancer Discov. 2019;9:1050–63.

    CAS  PubMed  Google Scholar 

  46. Joshi SK, Nechiporuk T, Bottomly D, Piehowski PD, Reisz JA, Pittsenbarger J, et al. The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell. 2021;39:999–1014 e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zavorka Thomas ME, Lu X, Talebi Z, Jeon JY, Buelow DR, Gibson AA, et al. Gilteritinib inhibits glutamine uptake and utilization in FLT3-ITD-positive AML. Mol Cancer Ther. 2021;20:2207–17.

    PubMed  PubMed Central  Google Scholar 

  48. Daver N, Cortes J, Ravandi F, Patel KP, Burger JA, Konopleva M, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015;125:3236–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. von Bubnoff N, Engh RA, Aberg E, Sänger J, Peschel C, Duyster J. FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro. Cancer Res. 2009;69:3032–41.

    Google Scholar 

  50. Bjelosevic S, Gruber E, Newbold A, Shembrey C, Devlin JR, Hogg SJ, et al. Serine biosynthesis is a metabolic vulnerability in FLT3-ITD-driven acute myeloid Leukemia. Cancer Discov. 2021;11:1582–99.

    CAS  PubMed  Google Scholar 

  51. Chyla B, Daver N, Doyle K, McKeegan E, Huang X, Ruvolo V, et al. Genetic biomarkers of sensitivity and resistance to venetoclax monotherapy in patients with relapsed acute myeloid Leukemia. Am J Hematol. 2018;93:E202–5.

    PubMed  PubMed Central  Google Scholar 

  52. Ong F, Kim K, Konopleva MY. Venetoclax resistance: mechanistic insights and future strategies. Cancer Drug Resist. 2022;5:380–400.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the MD Anderson Flow Cytometry & Cellular Imaging Core Facility and Functional Genomics Core Facility, which are supported in part by The University of Texas MD Anderson Cancer Center and grant number P30CA016672 from the National Institutes of Health/National Cancer Institute. Thank to Dr. Adam Siddiqui for providing the information on the discovery and full characterisation of TP-0184. The authors also thank Amy Ninetto of the Research Medical Library at MD Anderson for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AT conducted experiments, analyzed the data, and wrote the manuscript. AJ performed all the docking studies. SL, BY, and FED conducted experiments and performed data analysis. VLH analyzed the data and contributed to manuscript preparation. VA and BK performed Western blotting experiments and analyzed the data. MP, YZ, and STCW. analyzed RNA-seq data using bioinformatics tools. JMF and SLW developed TP-0184 and tested its effect on ACVR1 kinase activity. AS compiled all the information on the discovery and development of TP-0184. ND, and GB contributed to conceptualization of the project and data analysis. VLB conceptualized the study, planned all the experiments, interpreted the results, edited the manuscript, and performed critical review of the intellectual content of the manuscript.

Corresponding author

Correspondence to V. Lokesh Battula.

Ethics declarations

Competing interests

This work was supported by funding from Sumitomo Pharma Oncology and MD Anderson Cancer Center.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Jaggupilli, A., Ly, S. et al. TP-0184 inhibits FLT3/ACVR1 to overcome FLT3 inhibitor resistance and hinder AML growth synergistically with venetoclax. Leukemia 38, 82–95 (2024). https://doi.org/10.1038/s41375-023-02086-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02086-6

Search

Quick links