Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ANIMAL MODELS

Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice

Abstract

Iron overload (IOL) is hypothesized to contribute to dysplastic erythropoiesis. Several conditions, including myelodysplastic syndrome, thalassemia and sickle cell anemia, are characterized by ineffective erythropoiesis and IOL. Iron is pro-oxidant and may participate in the pathophysiology of these conditions by increasing genomic instability and altering the microenvironment. There is, however, lack of in vivo evidence demonstrating a role of IOL and oxidative damage in dysplastic erythropoiesis. NRF2 transcription factor is the master regulator of antioxidant defenses, playing a crucial role in the cellular response to IOL in the liver. Here, we crossed Nrf2−/− with hemochromatosis (Hfe−/−) or hepcidin-null (Hamp1−/−) mice. Double-knockout mice developed features of ineffective erythropoiesis and myelodysplasia including macrocytic anemia, splenomegaly, and accumulation of immature dysplastic bone marrow (BM) cells. BM cells from Nrf2/Hamp1−/− mice showed increased in vitro clonogenic potential and, upon serial transplantation, recipients disclosed cytopenias, despite normal engraftment, suggesting defective differentiation. Unstimulated karyotype analysis showed increased chromosome instability and aneuploidy in Nrf2/Hamp1−/− BM cells. In HFE-related hemochromatosis patients, NRF2 promoter SNP rs35652124 genotype TT (predicted to decrease NRF2 expression) associated with increased MCV, consistent with erythroid dysplasia. Our results suggest that IOL induces ineffective erythropoiesis and dysplastic hematologic features through oxidative damage in Nrf2-deficient cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of macrocytic anemia in aged Nrf2/Hfe−/− mice.
Fig. 2: Evidence of myelodysplasia in Nrf2/Hfe−/− mice and increased susceptibility of Nrf2−/− RBCs to phagocytosis in IOL.
Fig. 3: Development of macrocytic anemia, reticulocytosis and splenomegaly in Nrf2/Hamp1−/− mice.
Fig. 4: Development of myelodysplastic features in Nrf2/Hamp1−/− BM.
Fig. 5: Development of anemia and thrombocytopenia in recipient mice upon serial transplantation of Nrf2/Hamp1−/− BM.
Fig. 6: The association between NRF2 promoter SNP rs35652124 and the erythroid dysplasia in HC patients.

Similar content being viewed by others

Data availability

For original data, please contact tduarte@ibmc.up.pt.

References

  1. Camaschella C, Nai A. Ineffective erythropoiesis and regulation of iron status in iron loading anaemias. Br J Haematol. 2016;172:512–23.

    CAS  PubMed  Google Scholar 

  2. Cazzola M. Ineffective erythropoiesis and its treatment. Blood. 2022;139:2460–70.

    CAS  PubMed  Google Scholar 

  3. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/Dendritic neoplasms. Leukemia. 2022;36:1703–19.

    PubMed  PubMed Central  Google Scholar 

  4. Greenberg PL, Stone RM, Al-Kali A, Barta SK, Bejar R, Bennett JM, et al. Myelodysplastic Syndromes, Version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15:60–87.

    Google Scholar 

  5. Shallis RM, Ahmad R, Zeidan AM. The genetic and molecular pathogenesis of myelodysplastic syndromes. Eur J Haematol. 2018;101:260–71.

    CAS  PubMed  Google Scholar 

  6. Tria FP IV, Ang DC, Fan G. Myelodysplastic syndrome: diagnosis and screening. Diagnostics. 2022;12:1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes: incidence and survival in the United States. Cancer. 2007;109:1536–42.

    PubMed  Google Scholar 

  8. Rollison DE, Howlader N, Smith MT, Strom SS, Merritt WD, Ries LA, et al. Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001-2004, using data from the NAACCR and SEER programs. Blood. 2008;112:45–52.

    CAS  PubMed  Google Scholar 

  9. Goldberg SL, Chen E, Corral M, Guo A, Mody-Patel N, Pecora AL, et al. Incidence and clinical complications of myelodysplastic syndromes among United States Medicare beneficiaries. J Clin Oncol. 2010;28:2847–52.

    PubMed  Google Scholar 

  10. Greenberg PL, Rigsby CK, Stone RM, Deeg HJ, Gore SD, Millenson MM, et al. NCCN Task Force: Transfusion and iron overload in patients with myelodysplastic syndromes. J Natl Compr Cancer Netw. 2009;7:S1–S16.

    Google Scholar 

  11. Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202:199–211.

    CAS  PubMed  Google Scholar 

  12. Voskou S, Aslan M, Fanis P, Phylactides M, Kleanthous M. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Peddie CM, Wolf CR, McLellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-alpha concentration. Br J Haematol. 1997;99:625–31.

    CAS  PubMed  Google Scholar 

  14. Cortelezzi A, Cattaneo C, Cristiani S, Duca L, Sarina B, Deliliers GL, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematol J. 2000;1:153–8.

    CAS  PubMed  Google Scholar 

  15. Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. Int J Hematol. 2003;77:342–50.

    CAS  PubMed  Google Scholar 

  16. Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. Eur J Haematol. 2007;79:463–467.

    PubMed  Google Scholar 

  17. Novotna B, Bagryantseva Y, Siskova M, Neuwirtova R. Oxidative DNA damage in bone marrow cells of patients with low-risk myelodysplastic syndrome. Leuk Res. 2009;33:340–343.

    CAS  PubMed  Google Scholar 

  18. De Souza GF, Ribeiro HL Jr, De Sousa JC, Heredia FF, De Freitas RM, Martins MR, et al. HFE gene mutation and oxidative damage biomarkers in patients with myelodysplastic syndromes and its relation to transfusional iron overload: an observational cross-sectional study. BMJ Open. 2015;5:e006048.

    PubMed  PubMed Central  Google Scholar 

  19. Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89:1187–93.

    PubMed  Google Scholar 

  20. Badawi MA, Vickars LM, Chase JM, Leitch HA. Red blood cell transfusion independence following the initiation of iron chelation therapy in myelodysplastic syndrome. Adv Hematol. 2010;2010:164045.

    PubMed  PubMed Central  Google Scholar 

  21. Angelucci E, Li J, Greenberg P, Wu D, Hou M, Montano Figueroa EH, et al. Iron chelation in transfusion-dependent patients with low- to intermediate-1-risk myelodysplastic syndromes: a randomized trial. Ann Intern Med. 2020;172:513–22.

    PubMed  Google Scholar 

  22. An W, Feola M, Aluri S, Ruiz-Martinez M, Shridharan A, Levy M, et al. Iron chelation improves ineffective erythropoiesis and iron overload in myelodysplastic syndrome mice. 2022. bioRxiv. https://doi.org/10.1101/2022.10.05.510967.

  23. Gattermann N. Iron overload in myelodysplastic syndromes (MDS). Int J Hematol. 2018;107:55–63.

    CAS  PubMed  Google Scholar 

  24. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol. 2004;24:8477–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24:7130–7139.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox- regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004;24:10941–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant responsive element. Biochem Biophys Res Commun. 1997;236:313–22.

    CAS  PubMed  Google Scholar 

  28. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, et al. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nat Rev Drug Discov. 2019;18:295–317.

    CAS  PubMed  Google Scholar 

  29. Silva-Gomes S, Santos AG, Caldas C, Silva CM, Neves JV, Lopes J, et al. Transcription factor NRF2 protects mice against dietary iron-induced liver injury by preventing hepatocytic cell death. J Hepatol. 2014;60:354–61.

    CAS  PubMed  Google Scholar 

  30. Lim PJ, Duarte TL, Arezes J, Garcia-Santos D, Hamdi A, Pasricha SR, et al. Nrf2 controls iron homeostasis in haemochromatosis and thalassaemia via Bmp6 and hepcidin. Nat Metab. 2019;1:519–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Duarte TL, Caldas C, Santos AG, Silva-Gomes S, Santos-Gonçalves A, Martins MJ, et al. Genetic disruption of NRF2 promotes the development of necroinflammation and liver fibrosis in a mouse model of HFE-hereditary hemochromatosis. Redox Biol. 2017;11:157–69.

    CAS  PubMed  Google Scholar 

  32. Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood. 2022;139:3018–29.

    CAS  PubMed  Google Scholar 

  33. European Association for the Study of the Liver. EASL Clinical Practice Guidelines on haemochromatosis. J Hepatol. 2022;77:479–502.

  34. McGarry MP, Protheroe CA, Lee JJ. Mouse hematology: a laboratory manual. NY: Cold Spring Harbor Laboratory Press; 2010.

  35. Lopes M, Duarte TL, Teles MJ, Mosteo L, Chacim S, Aguiar E, et al. Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Adv. 2021;5:3102–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Duarte TL, Neves JV. Measurement of Tissue Non-Heme Iron Content using a Bathophenanthroline-Based Colorimetric Assay. J Vis Exp. 2022. https://doi.org/10.3791/63469.

  37. Carvalho F, Remião F, Soares ME, Catarino R, Queiroz G, Bastos ML. d-Amphetamine-induced hepatotoxicity: possible contribution of catecholamines and hyperthermia to the effect studied in isolated rat hepatocytes. Arch Toxicol. 1997;71:429–36.

    CAS  PubMed  Google Scholar 

  38. Silva-Gomes S, Bouton C, Silva T, Santambrogio P, Rodrigues P, Appelberg R, et al. Mycobacterium avium infection induces H-ferritin expression in mouse primary macrophages by activating Toll-like receptor 2. PLoS ONE. 2013;8:e82874.

    PubMed  PubMed Central  Google Scholar 

  39. Delaby C, Pilard N, Hetet G, Driss F, Grandchamp B, Beaumont C, et al. A physiological model to study iron recycling in macrophages. Exp Cell Res. 2005;310:43–53.

    CAS  PubMed  Google Scholar 

  40. Mosteo L, Reis J, Rocha L, Lopes M, Duarte D. Flow cytometry analysis of murine bone marrow hematopoietic stem and progenitor cells and stromal niche cells. J Vis Exp. 2022. https://doi.org/10.3791/64248.

  41. Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci USA. 2009;106:17413–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Akeson EC, Davisson MT. Mitotic chromosome preparations from mouse cells for karyotyping. Curr Protoc Hum Genet. 2001. https://doi.org/10.1002/0471142905.hg0410s25.

  43. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    PubMed Central  Google Scholar 

  44. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McLaren CE, Barton JC, Gordeuk VR, Wu L, Adams PC, Reboussin DM, et al. Determinants and characteristics of mean corpuscular volume and hemoglobin concentration in white HFE C282Y homozygotes in the hemochromatosis and iron overload screening study. Am J Hematol. 2007;82:898–905.

    CAS  PubMed  Google Scholar 

  46. Lee JM, Chan K, Kan YW, Johnson JA. Targeted disruption of Nrf2 causes regenerative immune-mediated hemolytic anemia. Proc Natl Acad Sci USA. 2004;101:9751–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. López-Revuelta A, Sánchez-Gallego JI, García-Montero AC, Hernández-Hernández A, Sánchez-Yagüe J, Llanillo M. Membrane cholesterol in the regulation of aminophospholipid asymmetry and phagocytosis in oxidized erythrocytes. Free Radic Biol Med. 2007;42:1106–18.

    PubMed  Google Scholar 

  48. Shapiro S, Gershon H, Rosenbaum H, Merchav S. Characterization of circulating erythrocytes from myelodysplastic patients treated with recombinant human erythropoietin. Leukemia. 1993;7:1328–33.

    CAS  PubMed  Google Scholar 

  49. Manabe M, Tanizawa N, Nanno S, Hagiwara Y, Asada R, Koh KR. Erythrophagocytosis in a patient with myelodysplastic syndrome with excess blasts-1 with isolated del(6q). Br J Haematol. 2022;196:803.

    PubMed  Google Scholar 

  50. Ramos P, Guy E, Chen N, Proenca CC, Gardenghi S, Casu C, et al. Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis. Blood. 2011;117:1379–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Altamura S, Marques O, Colucci S, Mertens C, Alikhanyan K, Muckenthaler MU. Regulation of iron homeostasis: Lessons from mouse models. Mol Asp Med. 2020;75:100872.

    CAS  Google Scholar 

  52. Marzec JM, Christie JD, Reddy SP, Jedlicka AE, Vuong H, Lanken PN, et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J. 2007;21:2237–46.

    CAS  PubMed  Google Scholar 

  53. Schwessinger R, Suciu MC, McGowan SJ, Telenius J, Taylor S, Higgs DR, et al. Sasquatch: predicting the impact of regulatory SNPs on transcription factor binding from cell- and tissue-specific DNase footprints. Genome Res. 2017;27:1730–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Morales-Marin ME, Cordova EJ, Centeno F, Martínez-Hernández A, Méndez-García A, Molina B, et al. NFE2L2 gene variants and arsenic susceptibility: a lymphoblastoid model. J Toxicol Environ Health A 2015;78:628–34.

    CAS  PubMed  Google Scholar 

  55. Ensembl. 1000 Genomes Project Phase 3 allele frequencies. https://oct2022.archive.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=2:177264845-177265845;v=rs35652124;vdb=variation;vf=189013378. Accessed February 2023.

  56. Chung YJ, Robert C, Gough SM, Rassool FV, Aplan PD. Oxidative stress leads to increased mutation frequency in a murine model of myelodysplastic syndrome. Leuk Res. 2014;38:95–102.

    CAS  PubMed  Google Scholar 

  57. Rivella S. β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100:418–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Golshayan AR, Jin T, Maciejewski J, Fu AZ, Bershadsky B, Kattan MW, et al. Efficacy of growth factors compared to other therapies for low-risk myelodysplastic syndromes. Br J Haematol. 2007;137:125–32.

    CAS  PubMed  Google Scholar 

  59. Platzbecker U, Symeonidis A, Oliva EN, Goede JS, Delforge M, Mayer J, et al. A phase 3 randomized placebo-controlled trial of darbepoetin alfa in patients with anemia and lower-risk myelodysplastic syndromes. Leukemia. 2017;31:1944–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020;382:140–51.

    CAS  PubMed  Google Scholar 

  61. Platzbecker U, Della Porta MG, Santini V, Zeidan AM, Komrokji RS, Shortt J, et al. Efficacy and safety of luspatercept versus epoetin alfa in erythropoiesis-stimulating agent-naive, transfusion-dependent, lower-risk myelodysplastic syndromes (COMMANDS): interim analysis of a phase 3, open-label, randomised controlled trial. Lancet. 2023;402:373–85.

    CAS  PubMed  Google Scholar 

  62. Suragani RN, Cawley SM, Li R, Wallner S, Alexander MJ, Mulivor AW, et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood. 2014;123:3864–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. da Silva-Coelho P, Kroeze LI, Yoshida K, Koorenhof-Scheele TN, Knops R, van de Locht LT, et al. Clonal evolution in myelodysplastic syndromes. Nat Commun. 2017;8:15099.

    PubMed  PubMed Central  Google Scholar 

  64. Garcia-Manero G, Tambaro FP, Bekele NB, Yang H, Ravandi F, Jabbour E, et al. Phase II trial of vorinostat with idarubicin and cytarabine for patients with newly diagnosed acute myelogenous leukemia or myelodysplastic syndrome. J Clin Oncol. 2012;30:2204–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lin P, Ren Y, Yan X, Luo Y, Zhang H, Kesarwani M, et al. The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica. 2019;104:485–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Jiang Y, Southam AD, Trova S, Beke F, Alhazmi B, Francis T, et al. Valproic acid disables the Nrf2 anti-oxidant response in acute myeloid leukaemia cells enhancing reactive oxygen species-mediated killing. Br J Cancer. 2022;126:275–86.

    CAS  PubMed  Google Scholar 

  67. Wang L, Zhang Q, Ye L, Ye X, Yang W, Zhang H, et al. All-trans retinoic acid enhances the cytotoxic effect of decitabine on myelodysplastic syndromes and acute myeloid leukaemia by activating the RARα-Nrf2 complex. Br J Cancer. 2023;128:691–701.

    CAS  PubMed  Google Scholar 

  68. Schneeweiss-Gleixner M, Greiner G, Herndlhofer S, Schellnegger J, Krauth MT, Gleixner KV, et al. Impact of HFE gene variants on iron overload, overall survival and leukemia-free survival in myelodysplastic syndromes. Am J Cancer Res. 2021;11:955–67.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financed by: National Funds through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/04293/2020; FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT (FCOMP-01-0124-FEDER-028447, PTDC/BIM-MET/0739/2012) to TLD; and by Forum Hematológico do Norte (FHN - 2021 - MDS NRF2 Iron) to GP. This work was funded in part by an EHA Research Grant award granted by the European Hematology Association (to DD) and by Programa Operacional Regional do Norte and co-funded by European Regional Development Fund under the project “The Porto Comprehensive Cancer Center” with the reference NORTE-01-0145-FEDER-072678 - Consórcio PORTO.CCC – Porto.Comprehensive Cancer Center. AMNS is supported by UIDB/50006/2020|UIDP/50006/2020. We would like to thank Dr. Susana Roncon (IPO-Porto) and Dr. Sérgio Lopes (IPO-Porto) for support with the colony assays.

Author information

Authors and Affiliations

Authors

Contributions

TLD, ML, MO, CV, AGS, JR, RA, AGS, SC, CO, BP, MJT, AS, RS, and DD performed experiments; TLD, AG, SC, BP, ACM, HD, RH, GP, and DD analyzed results; TLD, GP, and DD designed the research and wrote the paper; all authors proofread and approved the manuscript.

Corresponding authors

Correspondence to Tiago L. Duarte or Delfim Duarte.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, T.L., Lopes, M., Oliveira, M. et al. Iron overload induces dysplastic erythropoiesis and features of myelodysplasia in Nrf2-deficient mice. Leukemia 38, 96–108 (2024). https://doi.org/10.1038/s41375-023-02067-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02067-9

Search

Quick links