Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOGENOUS LEUKEMIA

Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis

Abstract

Imatinib Mesylate (imatinib) was once hailed as the magic bullet for chronic myeloid leukemia (CML) and remains a front-line therapy for CML to this day alongside other tyrosine kinase inhibitors (TKIs). However, TKI treatments are rarely curative and patients are often required to receive life-long treatment or otherwise risk relapse. Thus, there is a growing interest in identifying biomarkers in patients which can predict TKI response upon diagnosis. In this study, we analyze clinical data and differentially expressed miRNAs in CD34+ CML cells from 80 patients at diagnosis who were later classified as imatinib-responders or imatinib-nonresponders. A Cox Proportional Hazard (CoxPH) analysis identified 16 miRNAs that were associated with imatinib nonresponse and differentially expressed in these patients. We also trained a machine learning model with different combinations of the 16 miRNAs with and without clinical parameters and identified a panel with high predictive performance based on area-under-curve values of receiver-operating-characteristic and precision-recall curves. Interestingly, the multivariable panel consisting of both miRNAs and clinical features performed better than either miRNA or clinical panels alone. Thus, our findings may inform future studies on predictive biomarkers and serve as a tool to develop more optimized treatment plans for CML patients in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design and characterization of patient clinical features between imatinib-responders and imatinib-nonresponders.
Fig. 2: Multivariate analysis and predictive performance of combined clinical features in patients at diagnosis.
Fig. 3: Transcript levels of 16 differentially expressed miRNAs univariately associated with imatinib response between imatinib-responders and imatinib-nonresponders.
Fig. 4: Multivariate analysis and predictive performance of combined miRNAs in patients at diagnosis.
Fig. 5: Multivariate analysis and predictive performance of combined clinical and miRNA features in patients at diagnosis.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  2. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of BCR::ABL1 positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  3. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2006;109:58–60.

    Article  PubMed  Google Scholar 

  4. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122:515–22.

    Article  CAS  PubMed  Google Scholar 

  5. Nardi V, Azam M, Daley GQ. Mechanisms and implications of imatinib resistance mutations in BCR-ABL. Curr Opin Hematol. 2004;11:35–43.

    Article  CAS  PubMed  Google Scholar 

  6. Apperley JF. Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol. 2007;8. https://pubmed.ncbi.nlm.nih.gov/17976612/.

  7. Hochhaus A, Kreil S, Corbin AS, La Rosée P, Müller MC, Lahaye T, et al. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia. 2002;16:2190–6.

    Article  CAS  PubMed  Google Scholar 

  8. Weisberg E, Manley PW, Breitenstein W, Brüggen J, Cowan-Jacob SW, Ray A, et al. Characterization of AMN107, a selective inhibitor of native and mutant BCR::ABL1. Cancer Cell. 2005;7:129–41.

    Article  CAS  PubMed  Google Scholar 

  9. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004;305:399–401.

    Article  CAS  PubMed  Google Scholar 

  10. Senapati J, Sasaki K, Issa GC, Lipton JH, Radich JP, Jabbour E, et al. Management of chronic myeloid leukemia in 2023 - common ground and common sense. Blood Cancer J. 2023;13:58.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376:917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song HY, Noh H, Choi SY, Lee SE, Kim SH, Kee KM, et al. BCR::ABL1 transcript levels at 4 weeks have prognostic significance for time-specific responses and for predicting survival in chronic-phase chronic myeloid leukemia patients treated with various tyrosine kinase inhibitors. Cancer Med. 2018;7:5107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Clark RE, Apperley JF, Copland M, Cicconi S. Additional chromosomal abnormalities at chronic myeloid leukemia diagnosis predict an increased risk of progression. Blood Adv. 2021;5:1102–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glauche I, Kuhn M, Baldow C, Schulze P, Rothe T, Liebscher H, et al. Quantitative prediction of long-term molecular response in TKI-treated CML - Lessons from an imatinib versus dasatinib comparison. Sci Rep. 2018;8:12330.

    Article  PubMed  PubMed Central  Google Scholar 

  16. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol. 2018;9. https://www.frontiersin.org/articles/10.3389/fendo.2018.00402.

  17. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016;1:15004.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460–9.

    Article  CAS  PubMed  Google Scholar 

  19. Alves R, Gonçalves AC, Jorge J, Marques G, Luís D, Ribeiro AB, et al. MicroRNA signature refine response prediction in CML. Sci Rep. 2019;9:9666.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kotagama K, Chang Y, Mangone M. miRNAs as biomarkers in chronic myelogenous leukemia. Drug Dev Res. 2015;76:278–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Martins JRB, de Moraes LN, Cury SS, Dadalto J, Capannacci J, Carvalho RF, et al. Comparison of microRNA expression profile in chronic myeloid leukemia patients newly diagnosed and treated by allogeneic hematopoietic stem cell transplantation. Front Oncol. 2020;10:1544.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Svoronos AA, Engelman DM, Slack FJ. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016;76:3666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Machová Poláková K, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yen R, Grasedieck S, Wu A, Lin H, Su J, Rothe K, et al. Identification of key microRNAs as predictive biomarkers of Nilotinib response in chronic myeloid leukemia: a sub-analysis of the ENESTxtnd clinical trial. Leukemia. 2022;36:2443–52.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, et al. Properties of CD34+ CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood. 2010;116:2112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin H, Rothe K, Chen M, Wu A, Babaian A, Yen R, et al. The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood. 2020;136:596–609.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hothorn T, Lausen B. On the exact distribution of maximally selected rank statistics. Comput Stat Data Anal. 2003;43:121–37.

    Article  Google Scholar 

  28. Alves R, Gonçalves AC, Rutella S, Almeida AM, De Las Rivas J, Trougakos IP, et al. Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia— from molecular mechanisms to clinical relevance. Cancers. 2021;13:4820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Patel AB, O’Hare T, Deininger MW. Mechanisms of resistance to ABL kinase inhibition in CML and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin N Am. 2017;31:589–612.

    Article  Google Scholar 

  30. Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR::ABL1 Independent mechanisms of resistance in chronic myeloid leukemia. Front Oncol. 2019;9:939.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR::ABL1 activity. J Clin Investig. 2011;121:396–409.

    Article  CAS  PubMed  Google Scholar 

  33. Jiang X, Saw KM, Eaves A, Eaves C. Instability of BCR::ABL1 gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst. 2007;99:680–93.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia. 2007;21:926–35.

    Article  CAS  PubMed  Google Scholar 

  35. Qin YZ, Jiang Q, Jiang H, Lai YY, Zhu HH, Liu YR, et al. Combination of white blood cell count at presentation with molecular response at 3 months better predicts deep molecular responses to imatinib in newly diagnosed chronic-phase chronic myeloid leukemia patients. Medicine. 2016;95:e2486.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kuntegowdanahalli LC, Kanakasetty GB, Thanky AH, Dasappa L, Jacob LA, Mallekavu SB, et al. Prognostic and predictive implications of Sokal, Euro and EUTOS scores in chronic myeloid leukaemia in the imatinib era-experience from a tertiary oncology centre in Southern India. Ecancermedicalscience. 2016;10:679.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang XS, Gale RP, Huang XJ, Jiang Q. Is the Sokal or EUTOS long-term survival (ELTS) score a better predictor of responses and outcomes in persons with chronic myeloid leukemia receiving tyrosine-kinase inhibitors? Leukemia. 2022;36:482–91.

    Article  PubMed  Google Scholar 

  38. Neelakantan P, Gerrard G, Lucas C, Milojkovic D, May P, Wang L, et al. Combining BCR::ABL1 transcript levels at 3 and 6 months in chronic myeloid leukemia: implications for early intervention strategies. Blood. 2013;121:2739–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marin D, Ibrahim AR, Lucas C, Gerrard G, Wang L, Szydlo RM, et al. Assessment of BCR::ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30:232–8.

    Article  CAS  PubMed  Google Scholar 

  40. Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  41. Bagheri M, Khansarinejad B, Mosayebi G, Moradabadi A, Mondanizadeh M. Diagnostic value of plasma miR-145 and miR-185 as targeting of the APRIL oncogene in the B-cell chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2021;22:111–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pang B, Mao H, Wang J, Yang W. MiR-185-5p suppresses acute myeloid leukemia by inhibiting GPX1. Microvasc Res. 2022;140:104296.

    Article  CAS  PubMed  Google Scholar 

  43. Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W, et al. MiR-145 in cancer therapy resistance and sensitivity: a comprehensive review. Cancer Sci. 2020;111:3122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu WX, Liu Z, Deng F, Wang DD, Li XW, Tian T, et al. MiR-145: a potential biomarker of cancer migration and invasion. Am J Transl Res. 2019;11:6739–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye D, Shen Z, Zhou S. Function of microRNA-145 and mechanisms underlying its role in malignant tumor diagnosis and treatment. Cancer Manag Res. 2019;11:969–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Manvati S, Mangalhara KC, Kalaiarasan P, Chopra R, Agarwal G, Kumar R, et al. miR-145 supports cancer cell survival and shows association with DDR genes, methylation pattern, and epithelial to mesenchymal transition. Cancer Cell Int. 2019;19:230.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Xia H, Yamada S, Aoyama M, Sato F, Masaki A, Ge Y, et al. Prognostic impact of microRNA-145 down-regulation in adult T-cell leukemia/lymphoma. Hum Pathol. 2014;45:1192–8.

    Article  CAS  PubMed  Google Scholar 

  48. Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, et al. MicroRNA-145 promotes the apoptosis of leukemic stem cells and enhances drug-resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med. 2020;46:1289–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Favreau AJ, Sathyanarayana P. miR-590-5p, miR-219-5p, miR-15b and miR-628-5p are commonly regulated by IL-3, GM-CSF and G-CSF in acute myeloid leukemia. Leuk Res. 2012;36:334–41.

    Article  CAS  PubMed  Google Scholar 

  50. Rios-Colon L, Deep G, Kumar D. Emerging role of microRNA 628-5p as a novel biomarker for cancer and other diseases. Tumour Biol. 2019;41:1010428319881344.

    Article  CAS  PubMed  Google Scholar 

  51. Daugaard I, Sanders KJ, Idica A, Vittayarukskul K, Hamdorf M, Krog JD, et al. miR-151a induces partial EMT by regulating E-cadherin in NSCLC cells. Oncogenesis. 2017;6:e366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li B, Xia Y, Lv J, Wang W, Xuan Z, Chen C, et al. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche. Oncogene. 2021;40:6180–94.

    Article  CAS  PubMed  Google Scholar 

  53. Xie Y, Zhang Y, Liu X, Cao L, Han M, Wang C, et al. miR-151a-5p ppromotes the proliferation and metastasis of colorectal carcinoma cells by targeting AGMAT. Oncol Rep. 2023;49:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Almeida RS, Costa e Silva M, Coutinho LL, Garcia Gomes R, Pedrosa F, Massaro JD, et al. MicroRNA expression profiles discriminate childhood T- from B-acute lymphoblastic leukemia. Hematol. Oncol. 2019;37:103–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Stem Cell Assay Laboratory staff for processing patient samples, Josephine Leung and Kyi Min Saw for excellent technical assistance, members of the Leukemia/Bone Marrow Transplant Program of British Columbia and the Hematology Cell Bank of British Columbia for patient samples, the Terry Fox Laboratory FACS Facility for cell sorting and STEMCELL Technologies for culture reagents.

Funding

This work was supported by the Canadian Cancer Society, the Leukemia & Lymphoma Society of Canada, the Canadian Institutes of Health Research (CIHR) and the Collings Stevens Chronic Leukemia Research Fund (XJ). RY and HL both received Four-Year Fellowships from UBC and CIHR Frederick Banting and Charles Best Canada Graduate Scholarships; SG is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation – project 446251518); AW received MITACS Accelerate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

DLF, CE and XJ developed the concept and designed the experiments; AW and RY performed data analyses and statistical and bioinformatics analyses; SG provided expertise in complex statistical and data analyses and insightful discussions; HL, HN, AW performed qRT-PCR, CFC experiments and data analyses; DLF provided the clinical data and insightful discussions; AW, RY, SG, and XJ wrote the manuscript and all authors commented on it.

Corresponding author

Correspondence to Xiaoyan Jiang.

Ethics declarations

Competing interests

Research funding: Bristol-Myers Squibb Canada (DLF, CE and XJ). Other authors declare no conflicts of interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, A., Yen, R., Grasedieck, S. et al. Identification of multivariable microRNA and clinical biomarker panels to predict imatinib response in chronic myeloid leukemia at diagnosis. Leukemia 37, 2426–2435 (2023). https://doi.org/10.1038/s41375-023-02062-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02062-0

Search

Quick links