Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CHRONIC MYELOGENOUS LEUKEMIA

Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia

Abstract

The treatment of chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKIs) has been a model for cancer therapy development. Though most patients with CML have a normal quality and duration of life with TKI therapy, some patients progress to accelerated phase (AP) and blast phase (BP), both of which have a relatively poor prognosis. The rates of progression have reduced significantly from over >20% in the pre-TKI era to <5% now, largely due to refinements in CML therapy and response monitoring. Significant insights have been gained into the mechanisms of disease transformation including the role of additional cytogenetic abnormalities, somatic mutations, and other genomic alterations present at diagnosis or evolving on therapy. This knowledge is helping to optimize TKI therapy, improve prognostication and inform the development of novel combination regimens in these patients. While patients with de novo CML-AP have outcomes almost similar to CML in chronic phase (CP), those transformed from previously treated CML-CP should receive second- or third- generation TKIs and be strongly considered for allogeneic stem cell transplantation (allo-SCT). Similarly, patients with transformed CML-BP have particularly dismal outcomes with a median survival usually less than one year. Combination regimens with a potent TKI such as ponatinib followed by allo-SCT can achieve long-term survival in some transformed BP patients. Regimens including venetoclax in myeloid BP or inotuzumab ozogamicin or blinatumomab in lymphoid BP might lead to deeper and longer responses, facilitating potentially curative allo-SCT for patients with CML-BP once CP is achieved. Newer agents and novel combination therapies are further expanding the therapeutic arsenal in advanced phase CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagnostic criteria for accelerated phase and blast phase CML across different models.
Fig. 2: Risk factors for progression of chronic phase CML to advanced phases.
Fig. 3: Genomic, epigenetic and other intracellular and extracellular changes that drive progression from chronic phase CML to advanced phases.
Fig. 4: Genetic aberrations involved in blast phase CML and their association with immunophenotype.
Fig. 5: Proposed algorithm for the workup and management of advanced phase CML.

Similar content being viewed by others

References

  1. Sasaki K, Strom SS, O’Brien S, Jabbour E, Ravandi F, Konopleva M, et al. Relative survival in patients with chronic-phase chronic myeloid leukaemia in the tyrosine-kinase inhibitor era: analysis of patient data from six prospective clinical trials. Lancet Haematol. 2015;2:e186–93.

    Article  Google Scholar 

  2. Jabbour E, Kantarjian H. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring. Am J Hematol. 2020;95:691–709.

    Article  CAS  Google Scholar 

  3. Bower H, Björkholm M, Dickman PW, Höglund M, Lambert PC, Andersson TM-L. Life Expectancy of Patients With Chronic Myeloid Leukemia Approaches the Life Expectancy of the General Population. J Clin Oncol. 2016;34:2851–7.

    Article  CAS  Google Scholar 

  4. Branford S, Kim DDH, Apperley JF, Eide CA, Mustjoki S, Ong ST, et al. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia. 2019;33:1835–50.

    Article  Google Scholar 

  5. Hu Y, Li Q, Hou M, Peng J, Yang X, Xu S. Magnitude and Temporal Trend of the Chronic Myeloid Leukemia: On the Basis of the Global Burden of Disease Study 2019. JCO Global Oncology. 2021:1429–41.

  6. Hoffmann VS, Baccarani M, Hasford J, Castagnetti F, Di Raimondo F, Casado LF, et al. Treatment and outcome of 2904 CML patients from the EUTOS population-based registry. Leukemia. 2017;31:593–601.

    Article  CAS  Google Scholar 

  7. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl J Med. 2003;348:994–1004.

    Article  Google Scholar 

  8. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boqué C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34:2333–40.

    Article  CAS  Google Scholar 

  9. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30:1044–54.

    Article  CAS  Google Scholar 

  10. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl J Med. 2017;376:917–27.

    Article  CAS  Google Scholar 

  11. Bonifacio M, Stagno F, Scaffidi L, Krampera M, Di, Raimondo F. Management of chronic myeloid leukemia in advanced phase. Front Oncol. 2019;9:1132.

    Article  Google Scholar 

  12. How J, Venkataraman V, Hobbs GS. Blast and accelerated phase CML: room for improvement. Hematology. 2021;2021:122–8.

    Article  Google Scholar 

  13. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84.

    Article  CAS  Google Scholar 

  14. Giles FJ, Cortes JE, Kantarjian HM, O’Brien SM. Accelerated and blastic phases of chronic myelogenous leukemia. Hematol/Oncol Clin North Am. 2004;18:753–74.

    Article  Google Scholar 

  15. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  Google Scholar 

  16. Lauseker M, Bachl K, Turkina A, Faber E, Prejzner W, Olsson-Strömberg U, et al. Prognosis of patients with chronic myeloid leukemia presenting in advanced phase is defined mainly by blast count, but also by age, chromosomal aberrations and hemoglobin. Am J Hematol. 2019;94:1236–43.

    Article  CAS  Google Scholar 

  17. Wang W, Chen Z, Hu Z, Yin CC, Li S, Bai S, et al. Clinical significance of trisomy 8 that emerges during therapy in chronic myeloid leukemia. Blood Cancer J. 2016;6:e490.

    Article  CAS  Google Scholar 

  18. Issa GC, Kantarjian HM, Gonzalez GN, Borthakur G, Tang G, Wierda W, et al. Clonal chromosomal abnormalities appearing in Philadelphia chromosome–negative metaphases during CML treatment. Blood. 2017;130:2084–91.

    Article  CAS  Google Scholar 

  19. Clark RE, Apperley JF, Copland M, Cicconi S. Additional chromosomal abnormalities at chronic myeloid leukemia diagnosis predict an increased risk of progression. Blood Adv. 2021;5:1102–9.

    Article  CAS  Google Scholar 

  20. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  Google Scholar 

  21. Verma D, Kantarjian H, Shan J, O’Brien S, Estrov Z, Garcia-Manero G, et al. Survival outcomes for clonal evolution in chronic myeloid leukemia patients on second generation tyrosine kinase inhibitor therapy. Cancer. 2010;116:2673–81.

    CAS  Google Scholar 

  22. Ohanian M, Kantarjian HM, Quintas-Cardama A, Jabbour E, Abruzzo L, Verstovsek S, et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma, Myeloma Leuk. 2014;14:155–62.e1.

    Article  Google Scholar 

  23. Ohanian M, Kantarjian HM, Shoukier M, Dellasala S, Musaelyan A, Nogueras Gonzalez GM, et al. The clinical impact of time to response in de novo accelerated-phase chronic myeloid leukemia. Am J Hematol. 2020;95:1127–34.

  24. Ochi Y, Yoshida K, Huang Y-J, Kuo M-C, Nannya Y, Sasaki K, et al. Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia. Nat Commun. 2021;12:2833.

    Article  CAS  Google Scholar 

  25. Wang W, Cortes JE, Tang G, Khoury JD, Wang S, Bueso-Ramos CE, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127:2742–50.

    Article  CAS  Google Scholar 

  26. Gong Z, Medeiros LJ, Cortes JE, Chen Z, Zheng L, Li Y, et al. Cytogenetics-based risk prediction of blastic transformation of chronic myeloid leukemia in the era of TKI therapy. Blood Adv. 2017;1:2541–52.

    Article  CAS  Google Scholar 

  27. Wang W, Cortes JE, Lin P, Beaty MW, Ai D, Amin HM, et al. Clinical and prognostic significance of 3q26.2 and other chromosome 3 abnormalities in CML in the era of tyrosine kinase inhibitors. Blood. 2015;126:1699–706.

    Article  CAS  Google Scholar 

  28. Hehlmann R, Voskanyan A, Lauseker M, Pfirrmann M, Kalmanti L, Rinaldetti S, et al. High-risk additional chromosomal abnormalities at low blast counts herald death by CML. Leukemia. 2020;34:2074–86.

    Article  CAS  Google Scholar 

  29. Chen Z, Shao C, Wang W, Zuo Z, Mou X, Hu SJ, et al. Cytogenetic landscape and impact in blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Leukemia. 2017;31:585–92.

    Article  CAS  Google Scholar 

  30. Menezes J, Salgado RN, Acquadro F, Gómez-López G, Carralero MC, Barroso A, et al. ASXL1, TP53 and IKZF3 mutations are present in the chronic phase and blast crisis of chronic myeloid leukemia. Blood Cancer J. 2013;3:e157.

    Article  CAS  Google Scholar 

  31. Marum JE, Yeung DT, Purins L, Reynolds J, Parker WT, Stangl D, et al. ASXL1 and BIM germ line variants predict response and identify CML patients with the greatest risk of imatinib failure. Blood Adv. 2017;1:1369–81.

    Article  CAS  Google Scholar 

  32. Machnicki MM, Pepek M, Solarska I, Niesiobedzka-Krezel J, Seferynska I, Gora Tybor J, et al. ASXL1 mutations detectable at diagnosis may predict response to imatinib in patients with chronic myeloid leukemia. Blood. 2019;134:4148.

    Article  Google Scholar 

  33. Jain P, Kanagal-Shamanna R, Kantarjian HM, San Lucas FA, Ghorab A, Jabbour EJ, et al. Pattern of mutational changes in patients with chronic phase CML who are treated with frontline TKI and transform to blast phase CML. Blood. 2017;130:4172.

    Google Scholar 

  34. Klein F, Feldhahn N, Herzog S, Sprangers M, Mooster JL, Jumaa H, et al. BCR–ABL1 induces aberrant splicing of IKAROS and lineage infidelity in pre-B lymphoblastic leukemia cells. Oncogene. 2006;25:1118–24.

    Article  CAS  Google Scholar 

  35. Branford S, Wang P, Yeung DT, Thomson D, Purins A, Wadham C, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132:948–61.

    Article  CAS  Google Scholar 

  36. Ochi Y, Yoshida K, Huang Y-J, Kuo M-C, Sasaki K, Hosoya N, et al. Prognostic relevance of genetic abnormalities in blastic transformation of chronic myeloid leukemia. Blood. 2020;136:3–4.

    Article  Google Scholar 

  37. Komorowski L, Fidyt K, Patkowska E, Firczuk M. Philadelphia chromosome-positive leukemia in the lymphoid lineage-similarities and differences with the myeloid lineage and specific vulnerabilities. Int J Mol Sci. 2020;21:5776.

    Article  CAS  Google Scholar 

  38. Verma D, Kantarjian HM, Jones D, Luthra R, Borthakur G, Verstovsek S, et al. Chronic myeloid leukemia (CML) with P190BCR-ABL: analysis of characteristics, outcomes, and prognostic significance. Blood. 2009;114:2232–5.

    Article  CAS  Google Scholar 

  39. Adnan-Awad S, Kim D, Hohtari H, Javarappa KK, Brandstoetter T, Mayer I, et al. Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia. 2021;35:1964–75.

    Article  CAS  Google Scholar 

  40. Carella AM, Garuti A, Cirmena G, Catania G, Rocco I, Palermo C, et al. Kinase domain mutations of BCR-ABL identified at diagnosis before imatinib-based therapy are associated with progression in patients with high Sokal risk chronic phase chronic myeloid leukemia. Leuk Lymphoma. 2010;51:275–8.

    Article  CAS  Google Scholar 

  41. Soverini S, Martinelli G, Rosti G, Bassi S, Amabile M, Poerio A, et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol. 2005;23:4100–9.

    Article  CAS  Google Scholar 

  42. Loy K, Zenger M, Meggendorfer M, Hutter S, Kern W, Haferlach T, et al. Analysis of mechanisms of blast crisis in chronic myeloid leukemia by whole genome sequencing. Blood. 2020;136:19.

    Article  Google Scholar 

  43. Braun TP, Eide CA, Druker BJ. Response and resistance to BCR-ABL1-targeted therapies. Cancer Cell. 2020;37:530–42.

    Article  CAS  Google Scholar 

  44. Hanfstein B, Müller MC, Hehlmann R, Erben P, Lauseker M, Fabarius A, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26:2096–102.

    Article  CAS  Google Scholar 

  45. Jain P, Kantarjian H, Alattar ML, Jabbour E, Sasaki K, Nogueras Gonzalez G, et al. Long-term molecular and cytogenetic response and survival outcomes with imatinib 400 mg, imatinib 800 mg, dasatinib, and nilotinib in patients with chronic-phase chronic myeloid leukaemia: retrospective analysis of patient data from five clinical trials. Lancet Haematol. 2015;2:e118–28.

    Article  Google Scholar 

  46. Jabbour EJ, Hughes TP, Cortés JE, Kantarjian HM, Hochhaus A. Potential mechanisms of disease progression and management of advanced-phase chronic myeloid leukemia. Leuk Lymphoma. 2014;55:1451–62.

    Article  CAS  Google Scholar 

  47. Angelopoulou MK, Asimakopoulos JV, Galani Z, Levidou G, Roumelioti M, Vassilakopoulos TP, et al. Extramedullary sudden blast crisis in chronic-phase chronic myeloid leukemia during first-line treatment with nilotinib. Blood Cancer J. 2016;6:e461.

    Article  CAS  Google Scholar 

  48. Okada Y, Sato K, Kobayashi S, Nagao S, Takano K, Teramoto M, et al. Sudden blast phase in chronic myeloid leukemia developed during nilotinib therapy after major molecular response was achieved. Int J Hematol. 2018;107:495–7.

    Article  CAS  Google Scholar 

  49. Vijaya Prakash A, Sivakolundu KP, Savage NM, Kota VK, Shoukier M. Sudden blast crisis after excellent initial response in chronic myeloid leukemia. Cureus. 2021;13:e18368.

    Google Scholar 

  50. Ibrahim AR, Eliasson L, Apperley JF, Milojkovic D, Bua M, Szydlo R, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011;117:3733–6.

    Article  CAS  Google Scholar 

  51. Lauseker M, Hasford J, Saussele S, Kremers S, Kraemer D, Lindemann W, et al. Smokers with chronic myeloid leukemia are at a higher risk of disease progression and premature death. Cancer. 2017;123:2467–71.

    Article  CAS  Google Scholar 

  52. Hehlmann R, Lauseker M, Saußele S, Pfirrmann M, Krause S, Kolb HJ, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31:2398–406.

    Article  CAS  Google Scholar 

  53. Sokal J, Cox E, Baccarani M, Tura S, Gomez G, Robertson J, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63:789–99.

    Article  CAS  Google Scholar 

  54. Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118:686–92.

    Article  CAS  Google Scholar 

  55. Pfirrmann M, Baccarani M, Saussele S, Guilhot J, Cervantes F, Ossenkoppele G, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30:48–56.

    Article  CAS  Google Scholar 

  56. Zhang X-S, Gale RP, Huang X-J, Jiang Q. Is the Sokal or EUTOS long-term survival (ELTS) score a better predictor of responses and outcomes in persons with chronic myeloid leukemia receiving tyrosine-kinase inhibitors? Leukemia. 2022;36:482–91.

    Article  Google Scholar 

  57. Sato E, Iriyama N, Tokuhira M, Takaku T, Ishikawa M, Nakazato T, et al. The EUTOS long-term survival score predicts disease-specific mortality and molecular responses among patients with chronic myeloid leukemia in a practice-based cohort. Cancer Med. 2020;9:8931–9.

    Article  CAS  Google Scholar 

  58. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010;120:2254–64.

    Article  CAS  Google Scholar 

  59. Koch D, Eisinger RS, Gebharter A. A causal Bayesian network model of disease progression mechanisms in chronic myeloid leukemia. J Theor Biol. 2017;433:94–105.

    Article  Google Scholar 

  60. Baykal-Köse S, Acikgoz E, Yavuz AS, Gönül Geyik Ö, Ateş H, Sezerman OU, et al. Adaptive phenotypic modulations lead to therapy resistance in chronic myeloid leukemia cells. PLOS ONE. 2020;15:e0229104.

    Article  Google Scholar 

  61. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci. 2006;103:2794–9.

    Article  CAS  Google Scholar 

  62. Charaf L, Mahon FX, Lamrissi-Garcia I, Moranvillier I, Beliveau F, Cardinaud B, et al. Effect of tyrosine kinase inhibitors on stemness in normal and chronic myeloid leukemia cells. Leukemia. 2017;31:65–74.

    Article  CAS  Google Scholar 

  63. Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543–56.

    Article  CAS  Google Scholar 

  64. Hamilton A, Helgason GV, Schemionek M, Zhang B, Myssina S, Allan EK, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119:1501–10.

    Article  CAS  Google Scholar 

  65. Bolton-Gillespie E, Schemionek M, Klein H-U, Flis S, Hoser G, Lange T, et al. Genomic instability may originate from imatinib-refractory chronic myeloid leukemia stem cells. Blood. 2013;121:4175–83.

    Article  CAS  Google Scholar 

  66. Fernandes MS, Reddy MM, Gonneville JR, DeRoo SC, Podar K, Griffin JD, et al. BCR-ABL promotes the frequency of mutagenic single-strand annealing DNA repair. Blood. 2009;114:1813–9.

    Article  CAS  Google Scholar 

  67. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A, et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia. 2007;21:926–35.

    Article  CAS  Google Scholar 

  68. Senapati J, Sasaki K. Chromosomal instability in chronic myeloid leukemia: mechanistic insights and effects. Cancers. 2022;14:2533.

    Article  CAS  Google Scholar 

  69. Hosoya N, Sanada M, Nannya Y, Nakazaki K, Wang L, Hangaishi A, et al. Genomewide screening of DNA copy number changes in chronic myelogenous leukemia with the use of high-resolution array-based comparative genomic hybridization. Genes Chromosomes Cancer. 2006;45:482–94.

    Article  CAS  Google Scholar 

  70. Brazma D, Grace C, Howard J, Melo JV, Holyoke T, Apperley JF, et al. Genomic profile of chronic myelogenous leukemia: Imbalances associated with disease progression. Genes Chromosomes Cancer. 2007;46:1039–50.

    Article  CAS  Google Scholar 

  71. Cramer K, Nieborowska-Skorska M, Koptyra M, Slupianek A, Penserga ET, Eaves CJ, et al. BCR/ABL and other kinases from chronic myeloproliferative disorders stimulate single-strand annealing, an unfaithful DNA double-strand break repair. Cancer Res. 2008;68:6884–8.

    Article  CAS  Google Scholar 

  72. Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, et al. Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias. Oncogene. 2013;32:1784–93.

    Article  CAS  Google Scholar 

  73. Muvarak N, Kelley S, Robert C, Baer MR, Perrotti D, Gambacorti-Passerini C, et al. c-MYC generates repair errors via increased transcription of alternative-NHEJ factors, LIG3 and PARP1, in tyrosine kinase-activated leukemias. Mol Cancer Res. 2015;13:699–712.

    Article  CAS  Google Scholar 

  74. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell. 2005;8:355–68.

    Article  CAS  Google Scholar 

  75. Perrotti D, Neviani P. ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia. Br J Cancer. 2006;95:775–81.

    Article  CAS  Google Scholar 

  76. Panuzzo C, Crivellaro S, Carrà G, Guerrasio A, Saglio G, Morotti A. BCR-ABL promotes PTEN downregulation in chronic myeloid leukemia. PLOS ONE. 2014;9:e110682.

    Article  Google Scholar 

  77. Crivellaro S, Carrà G, Panuzzo C, Taulli R, Guerrasio A, Saglio G, et al. The non-genomic loss of function of tumor suppressors: an essential role in the pathogenesis of chronic myeloid leukemia chronic phase. BMC Cancer. 2016;16:314.

    Article  Google Scholar 

  78. Perrotti D, Neviani P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013;14:e229–e38.

    Article  CAS  Google Scholar 

  79. Kuribara R, Honda H, Matsui H, Shinjyo T, Inukai T, Sugita K, et al. Roles of Bim in apoptosis of normal and Bcr-Abl-expressing hematopoietic progenitors. Mol Cell Biol. 2004;24:6172–83.

    Article  CAS  Google Scholar 

  80. Mologni L, Piazza R, Khandelwal P, Pirola A, Gambacorti-Passerini C. Somatic mutations identified at diagnosis by exome sequencing can predict response to imatinib in chronic phase chronic myeloid leukemia (CML) patients. Am J Hematol. 2017;92:E623–E5.

    Article  CAS  Google Scholar 

  81. Nteliopoulos G, Bazeos A, Claudiani S, Gerrard G, Curry E, Szydlo R, et al. Somatic variants in epigenetic modifiers can predict failure of response to imatinib but not to second-generation tyrosine kinase inhibitors. Haematologica. 2019;104:2400–9.

    Article  CAS  Google Scholar 

  82. Bidikian A, Kantarjian H, Jabbour E, Short N, Ravandi F, Issa G, et al. P695: Prognostic impact of ASXL1 mutations in chronic phase cml. HemaSphere. 2022;6:590–1.

    Article  Google Scholar 

  83. Ko TK, Javed A, Lee KL, Pathiraja TN, Liu X, Malik S, et al. An integrative model of pathway convergence in genetically heterogeneous blast crisis chronic myeloid leukemia. Blood. 2020;135:2337–53.

    Article  Google Scholar 

  84. Krishnan V, Kim DDH, Hughes TP, Branford S, Ong ST. Integrating genetic and epigenetic factors in chronic myeloid leukemia risk assessment: toward gene expression-based biomarkers. Haematologica. 2021;107:358–70.

    Article  Google Scholar 

  85. Samanta AK, Chakraborty SN, Wang Y, Kantarjian H, Sun X, Hood J, et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene. 2009;28:1669–81.

    Article  CAS  Google Scholar 

  86. Chakraborty S, Lin YH, Leng X, Miranda RN, Medeiros LJ, Shpall E, et al. Activation of Jak2 in patients with blast crisis chronic myelogenous leukemia: inhibition of Jak2 inactivates Lyn kinase. Blood Cancer J. 2013;3:e142.

    Article  CAS  Google Scholar 

  87. Jain P, Kantarjian HM, Ghorab A, Sasaki K, Jabbour EJ, Nogueras Gonzalez G, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer. 2017;123:4391–402.

    Article  CAS  Google Scholar 

  88. Ohanian M, Kantarjian HM, Quintas-Cardama A, O’Brien S, Verstovsek S, Borthakur G, et al. Frontline tyrosine kinase inhibitors (TKI) as initial therapy for patients with chronic myeloid leukemia in accelerated phase (CML-AP). Blood. 2011;118:3779.

    Article  Google Scholar 

  89. Kadia TM, Daver N, Virani F, Jabbour E, Pierce S, Pemmaraju N, et al. Incidence, clinical characteristics, and prognostic significance of chromosome 3q abnormalities in patients with CML blast phase. Blood. 2013;122:2714.

    Article  Google Scholar 

  90. Ilaria RL Jr. Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematology. 2005;2005:188–94.

    Article  Google Scholar 

  91. Khemka R, Gupta M, Jena NK. CML with megakaryocytic blast crisis: report of 3 cases. Pathol Oncol Res. 2019;25:1253–8.

    Article  CAS  Google Scholar 

  92. Wolanin S, McCall RK, Pettenati MJ, Beaty MW, Insuasti-Beltran G, Powell BL, et al. PML-RARA fusion transcripts detectable 8 months prior to promyelocytic blast crisis in chronic myeloid leukemia. Case Rep. Hematol. 2020;2020:8830595.

    Google Scholar 

  93. Parsi M, Budak-Alpdogan T. Promyelocytic blast crisis of chronic myeloid leukemia in a patient undergoing therapy with a tyrosine kinase inhibitor. Cureus. 2020;12:e7217.

    Google Scholar 

  94. Wiernik PH, Dutcher JP, Paietta E, Hittelman WN, Vyas R, Strack M, et al. Treatment of promyelocytic blast crisis of chronic myelogenous leukemia with all trans-retinoic acid. Leukemia. 1991;5:504–9.

    CAS  Google Scholar 

  95. Senapati J, Devasia AJ, Alex AA, George B. Early T cell precursor lymphoid blast crisis of chronic myeloid leukemia – a novel transformation. Hematol/Oncol Stem Cell Ther. 2015;8:43–6.

    Article  Google Scholar 

  96. Hunger SP. CML in blast crisis: more common than we think? Blood. 2017;129:2713–4.

    Article  CAS  Google Scholar 

  97. Hovorkova L, Zaliova M, Venn NC, Bleckmann K, Trkova M, Potuckova E, et al. Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. Blood. 2017;129:2771–81.

    Article  CAS  Google Scholar 

  98. Liu H. Basophilic myeloblasts: a clue for CML blast phase. Blood. 2021;137:2852.

    Article  CAS  Google Scholar 

  99. Wang W, Hu Z. Leukocytosis with left-shifted myeloid maturation in a peripheral blood specimen: a clue to the lymphoid blast phase of CML. Blood. 2022;139:305.

    Article  CAS  Google Scholar 

  100. Anastasi J, Feng J, Dickstein JI, Le Beau MM, Rubin CM, Larson RA, et al. Lineage involvement by BCR/ABL in Ph+ lymphoblastic leukemias: chronic myelogenous leukemia presenting in lymphoid blast vs Ph+ acute lymphoblastic leukemia. Leukemia. 1996;10:795–802.

    CAS  Google Scholar 

  101. Kolenova A, Maloney KW, Hunger SP. Philadelphia chromosome–positive acute lymphoblastic leukemia or chronic myeloid leukemia in lymphoid blast crisis. J Pediatr Hematol/Oncol. 2016;38:e193–e5.

    Article  CAS  Google Scholar 

  102. Balducci E, Loosveld M, Rahal I, Boudjarane J, Alazard E, Missirian C, et al. Interphase FISH for BCR-ABL1 rearrangement on neutrophils: a decisive tool to discriminate a lymphoid blast crisis of chronic myeloid leukemia from a de novo BCR-ABL1 positive acute lymphoblastic leukemia. Hematol Oncol. 2018;36:344–8.

    Article  CAS  Google Scholar 

  103. Yang S, Zhang XS, Gale RP, Huang XJ, Jiang Q. Co-variates associated with outcomes of tyrosine kinaseinhibitor therapy in persons with chronic myeloid leukaemia initially presenting in accelerated phase. Leukemia. 2022;36:1818–24.

  104. Cortes JE. A second-generation TKI should always be used as initial therapy for CML. Blood Adv. 2018;2:3653–5.

    Article  Google Scholar 

  105. Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chuah C, Kim DW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018;36:231–7.

    Article  CAS  Google Scholar 

  106. Network NCC. Chronic Myeloid leukemia NCCN website: NCCN; 2022 [updated 01-27-2022]. Version 3.2022: Available from: https://www.nccn.org/professionals/physician_gls/pdf/cml.pdf.

  107. Francesca P, Fausto C, Giuliana A, Nicoletta T, Massimo B, Simona L, et al. The long-term durability of cytogenetic responses in patients with accelerated phase chronic myeloid leukemia treated with imatinib 600 mg: the GIMEMA CML Working Party experience after a 7-year follow-up. Haematologica. 2009;94:205–12.

    Article  Google Scholar 

  108. Apperley JF, Cortes JE, Kim D-W, Roy L, Roboz GJ, Rosti G, et al. Dasatinib in the treatment of chronic myeloid leukemia in accelerated phase after imatinib failure: the START A trial. J Clin Oncol. 2009;27:3472–9.

    Article  CAS  Google Scholar 

  109. Ottmann O, Saglio G, Apperley JF, Arthur C, Bullorsky E, Charbonnier A, et al. Long-term efficacy and safety of dasatinib in patients with chronic myeloid leukemia in accelerated phase who are resistant to or intolerant of imatinib. Blood Cancer J. 2018;8:88.

    Article  Google Scholar 

  110. le Coutre PD, Giles FJ, Hochhaus A, Apperley JF, Ossenkoppele GJ, Blakesley R, et al. Nilotinib in patients with Ph+ chronic myeloid leukemia in accelerated phase following imatinib resistance or intolerance: 24-month follow-up results. Leukemia. 2012;26:1189–94.

    Article  Google Scholar 

  111. Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in philadelphia chromosome–positive leukemias. N. Engl J Med. 2013;369:1783–96.

    Article  CAS  Google Scholar 

  112. Cortes JE, Kim D-W, Pinilla-Ibarz J, le Coutre PD, Paquette R, Chuah C, et al. Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132:393–404.

    Article  CAS  Google Scholar 

  113. Cortes J, Apperley J, Lomaia E, Moiraghi B, Undurraga Sutton M, Pavlovsky C, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138:2042–50.

    Article  CAS  Google Scholar 

  114. Kantarjian HM, Jabbour E, Deininger M, Abruzzese E, Apperley J, Cortes J, et al. Ponatinib after failure of second-generation tyrosine kinase inhibitor in resistant chronic-phase chronic myeloid leukemia. Am J Hematol. 2022;97:1419–26.

  115. Jiang Q, Huang X, Chen Z, Niu Q, Shi D, Li Z, et al. Novel BCR-ABL1 tyrosine kinase inhibitor (TKI) HQP1351 (Olverembatinib) is efficacious and well tolerated in patients with T315I-mutated chronic myeloid leukemia (CML): results of pivotal (Phase II) trials. Blood. 2020;136:50–1.

    Article  Google Scholar 

  116. Craddock CF. We do still transplant CML, don’t we? Hematol Am Soc Hematol Educ Program. 2018;2018:177–84.

    Article  Google Scholar 

  117. Kantarjian HM, O’Brien S, Cortes J, Giles FJ, Faderl S, Issa JP, et al. Results of decitabine (5-aza-2’deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia. Cancer. 2003;98:522–8.

    Article  CAS  Google Scholar 

  118. Oki Y, Kantarjian HM, Gharibyan V, Jones D, O’Brien S, Verstovsek S, et al. Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer. 2007;109:899–906.

    Article  CAS  Google Scholar 

  119. Abaza Y, Kantarjian H, Alwash Y, Borthakur G, Champlin R, Kadia T, et al. Phase I/II study of dasatinib in combination with decitabine in patients with accelerated or blast phase chronic myeloid leukemia. Am J Hematol. 2020;95:1288–95.

    Article  CAS  Google Scholar 

  120. Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12:316–28.

    Article  CAS  Google Scholar 

  121. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8:355ra117.

    Article  Google Scholar 

  122. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl J Med. 2001;344:1038–42.

    Article  CAS  Google Scholar 

  123. Cortes J, Rousselot P, Kim D-W, Ritchie E, Hamerschlak N, Coutre S, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2006;109:3207–13.

    Article  Google Scholar 

  124. Saglio G, Hochhaus A, Goh YT, Masszi T, Pasquini R, Maloisel F, et al. Dasatinib in imatinib-resistant or imatinib-intolerant chronic myeloid leukemia in blast phase after 2 years of follow-up in a phase 3 study. Cancer. 2010;116:3852–61.

    Article  CAS  Google Scholar 

  125. Giles FJ, Kantarjian HM, le Coutre PD, Baccarani M, Mahon FX, Blakesley RE, et al. Nilotinib is effective in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blastic phase. Leukemia. 2012;26:959–62.

    Article  CAS  Google Scholar 

  126. Castagnetti F, Pane F, Rosti G, Saglio G, Breccia M. Dosing strategies for improving the risk-benefit profile of ponatinib in patients with chronic myeloid leukemia in chronic phase. Front Oncol. 2021;11:642005.

    Article  Google Scholar 

  127. Jabbour EJ, Deininger MW, Abruzzese E, Apperley JF, Cortes JE, Chuah C, et al. Dose modification dynamics of ponatinib in patients with chronic-phase chronic myeloid leukemia (CP-CML) from the PACE and optic trials. Blood. 2021;138:2550.

    Article  Google Scholar 

  128. Chan O, Talati C, Isenalumhe L, Shams S, Nodzon L, Fradley M, et al. Side-effects profile and outcomes of ponatinib in the treatment of chronic myeloid leukemia. Blood Adv. 2020;4:530–8.

    Article  CAS  Google Scholar 

  129. Strati P, Kantarjian H, Thomas D, O’Brien S, Konoplev S, Jorgensen JL, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014;120:373–80.

    Article  CAS  Google Scholar 

  130. Morita K, Kantarjian HM, Sasaki K, Issa GC, Jain N, Konopleva M, et al. Outcome of patients with chronic myeloid leukemia in lymphoid blastic phase and Philadelphia chromosome–positive acute lymphoblastic leukemia treated with hyper-CVAD and dasatinib. Cancer. 2021;127:2641–7.

    Article  CAS  Google Scholar 

  131. Benjamini O, Dumlao TL, Kantarjian H, O’Brien S, Garcia-Manero G, Faderl S, et al. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014;89:282–7.

    Article  CAS  Google Scholar 

  132. Jain N, Maiti A, Ravandi F, Konopleva M, Daver N, Kadia T, et al. Inotuzumab ozogamicin with bosutinib for relapsed or refractory Philadelphia chromosome positive acute lymphoblastic leukemia or lymphoid blast phase of chronic myeloid leukemia. Am J Hematol. 2021;96:1000–7.

    Article  CAS  Google Scholar 

  133. Sasaki K, Jabbour EJ, Ravandi F, Short NJ, Thomas DA, Garcia-Manero G, et al. Hyper-CVAD plus ponatinib versus hyper-CVAD plus dasatinib as frontline therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukemia: a propensity score analysis. Cancer. 2016;122:3650–6.

    Article  CAS  Google Scholar 

  134. Ravandi F. How I treat Philadelphia chromosome–positive acute lymphoblastic leukemia. Blood. 2019;133:130–6.

    Article  CAS  Google Scholar 

  135. Samra B, Jabbour E, Ravandi F, Kantarjian H, Short NJ. Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J Hematol Oncol. 2020;13:70.

    Article  Google Scholar 

  136. Patel SA, Bledsoe JR, Higgins AW, Hutchinson L, Gerber JM. Rapid and deep remission induced by blinatumomab for CD19-positive chronic myeloid leukemia in lymphoid blast phase. JCO Precis Oncol. 2021;5:1141–6.

    Article  Google Scholar 

  137. Assi R, Kantarjian H, Short NJ, Daver N, Takahashi K, Garcia-Manero G, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed philadelphia chromosome-positive leukemia. Clin Lymphoma Myeloma Leuk. 2017;17:897–901.

    Article  Google Scholar 

  138. Short N, Kantarjian H, Konopleva M, Jain N, Ravandi F, Huang X, et al. S114: ponatinib and blinatumomab for patients with philadelphia chromosome-positive acute lymphoblastic leukemia: updated results from a phase II study. HemaSphere. 2022;6:15–6.

    Article  Google Scholar 

  139. Copland M, Slade D, McIlroy G, Horne G, Byrne JL, Rothwell K, et al. Ponatinib with fludarabine, cytarabine, idarubicin, and granulocyte colony-stimulating factor chemotherapy for patients with blast-phase chronic myeloid leukaemia (MATCHPOINT): a single-arm, multicentre, phase 1/2 trial. Lancet Haematol. 2022;9:e121–e32.

    Article  Google Scholar 

  140. Maiti A, Franquiz MJ, Ravandi F, Cortes JE, Jabbour EJ, Sasaki K, et al. Venetoclax and BCR-ABL tyrosine kinase inhibitor combinations: outcome in patients with philadelphia chromosome-positive advanced myeloid leukemias. Acta Haematol. 2020;143:567–73.

    Article  CAS  Google Scholar 

  141. Saxena K, Jabbour E, Issa G, Sasaki K, Ravandi F, Maiti A, et al. Impact of frontline treatment approach on outcomes of myeloid blast phase CML. J Hematol Oncol. 2021;14:94.

    Article  CAS  Google Scholar 

  142. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl J Med. 2020;383:617–29.

    Article  CAS  Google Scholar 

  143. Kantarjian H, Ravandi F, Short NJ, Huang X, Jain N, Sasaki K, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2018;19:240–8.

    Article  CAS  Google Scholar 

  144. Kantarjian H, O’Brien S. Poor penetration of existing effective chemoimmunotherapy for the treatment of older patients with newly diagnosed acute lymphocytic leukemia (ALL) or refractory/relapsed ALL. J Oncol Pract. 2019;15:77–9.

    Article  Google Scholar 

  145. Short NJ, Kantarjian H, Ravandi F, Huang X, Jain N, Kadia TM, et al. Updated results from a phase II study of mini-hyper-CVD plus inotuzumab ozogamicin, with or without blinatumomab, in older adults with newly diagnosed philadelphia chromosome-negative B-cell acute lymphoblastic leukemia. Blood. 2021;138:3400.

    Article  Google Scholar 

  146. Maakaron JE, Zhang M-J, Chen K, Abhyankar S, Bhatt VR, Chhabra S, et al. Age is no barrier for adults undergoing HCT for AML in CR1: contemporary CIBMTR analysis. Bone Marrow Transplant. 2022;57:911–7.

    Article  Google Scholar 

  147. Gong Z, Bai S, Hu S. Mixed phenotype blast phase of chronic myeloid leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;128:5438.

    Article  Google Scholar 

  148. Dragana M, Amr I, Alistair R, Letizia F, Jane A, David M. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica. 2012;97:473–4.

    Article  Google Scholar 

  149. Sahu KK, Malhotra P, Uthamalingam P, Prakash G, Bal A, Varma N, et al. Chronic myeloid leukemia with extramedullary blast crisis: two unusual sites with review of literature. Indian J Hematol Blood Transfus. 2016;32:89–95.

    Article  Google Scholar 

  150. Kiran PK, Badarke GV, Suresh CN, Srinivas BJ, Naik R. Isolated central nervous system blast crisis in a case of chronic myeloid leukemia on dasatinib. South Asian J Cancer. 2018;7:170.

    Article  CAS  Google Scholar 

  151. Porkka K, Koskenvesa P, Lundán T, Rimpiläinen J, Mustjoki S, Smykla R, et al. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome–positive leukemia. Blood. 2008;112:1005–12.

    Article  CAS  Google Scholar 

  152. He J-B, Zhang X, Guo Z-W, Liu M-M, Xu N, Huang F, et al. Ponatinib therapy in recurrent Philadelphia chromosome-positive central nervous system leukemia with T315I mutation after Allo-HSCT. Int J Cancer. 2020;147:1071–7.

    Article  CAS  Google Scholar 

  153. Novartis. Scemblix (asciminib) tablets prescribing information: Novartis; Revised October 2021. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215358s000Orig1lbl.pdf.

  154. Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelo DJ, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N. Engl J Med. 2019;381:2315–26.

    Article  CAS  Google Scholar 

  155. Réa D, Mauro MJ, Boquimpani C, Minami Y, Lomaia E, Voloshin S, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138:2031–41.

    Article  Google Scholar 

  156. Mu H, Zhu X, Jia H, Zhou L, Liu H. Combination therapies in chronic myeloid leukemia for potential treatment-free remission: focus on leukemia stem cells and immune modulation. Front Oncol. 2021;11:643382.

  157. Hsieh YC, Kirschner K, Copland M. Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape. Leukemia. 2021;35:1229–42.

    Article  CAS  Google Scholar 

  158. Maiti A, Kantarjian HM, Ferrajoli A, Estrov Z, Borthakur G, Garcia-Manero G, et al. Homoharringtonine (HHT) with imatinib in chronic, accelerated, and blast phase chronic myeloid leukemia (CML). Blood. 2016;128:5449.

    Article  Google Scholar 

  159. Cortes J, Lang F. Third-line therapy for chronic myeloid leukemia: current status and future directions. J Hematol Oncol. 2021;14:44.

    Article  CAS  Google Scholar 

  160. Niederwieser C, Morozova E, Zubarovskaya L, Zabelina T, Klyuchnikov E, Janson D, et al. Risk factors for outcome after allogeneic stem cell transplantation in patients with advanced phase CML. Bone Marrow Transplant. 2021;56:2834–41.

    Article  CAS  Google Scholar 

  161. Radujkovic A, Dietrich S, Blok HJ, Nagler A, Ayuk F, Finke J, et al. Allogeneic stem cell transplantation for blast crisis chronic myeloid leukemia in the era of tyrosine kinase inhibitors: a retrospective study by the EBMT chronic malignancies working party. Biol Blood Marrow Transpl. 2019;25:2008–16.

    Article  CAS  Google Scholar 

  162. Nicolini FE, Basak GW, Kim DW, Olavarria E, Pinilla-Ibarz J, Apperley JF, et al. Overall survival with ponatinib versus allogeneic stem cell transplantation in Philadelphia chromosome-positive leukemias with the T315I mutation. Cancer. 2017;123:2875–80.

    Article  CAS  Google Scholar 

  163. Hu B, Lin X, Lee HC, Huang X, Tidwell RSS, Ahn KW, et al. Timing of allogeneic hematopoietic cell transplantation (alloHCT) for chronic myeloid leukemia (CML) patients. Leuk Lymphoma. 2020;61:2811–20.

    Article  Google Scholar 

  164. Barrett AJ, Ito S. The role of stem cell transplantation for chronic myelogenous leukemia in the 21st century. Blood. 2015;125:3230–5.

    Article  CAS  Google Scholar 

  165. DeFilipp Z, Ancheta R, Liu Y, Hu Z-H, Gale RP, Snyder D, et al. Maintenance tyrosine kinase inhibitors following allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia: a center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2020;26:472–9.

    Article  CAS  Google Scholar 

  166. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant philadelphia chromosome–positive leukemias. N. Engl J Med. 2006;354:2531–41.

    Article  CAS  Google Scholar 

  167. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and philadelphia chromosome–positive ALL. N. Engl J Med. 2006;354:2542–51.

    Article  Google Scholar 

  168. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory philadelphia chromosome–positive leukemias. N. Engl J Med. 2012;367:2075–88.

    Article  CAS  Google Scholar 

  169. Deau B, Nicolini FE, Guilhot J, Huguet F, Guerci A, Legros L, et al. The addition of daunorubicin to imatinib mesylate in combination with cytarabine improves the response rate and the survival of patients with myeloid blast crisis chronic myelogenous leukemia (AFR01 study). Leuk Res. 2011;35:777–82.

    Article  CAS  Google Scholar 

Download references

Funding

NJS is supported by the K12 Paul Calabresi Clinical Oncology Scholar Award and the American Society of Hematology Junior Faculty Scholar Award in Clinical Research.

Author information

Authors and Affiliations

Authors

Contributions

JS analyzed the available data, wrote the first draft and subsequent versions, made the figures and tables; EJ and HK edited the manuscript and approved the final version; NJS conceptualized and designed the manuscript, analyzed the available data, edited the first draft and subsequent versions, edited the tables and figures and approved the final version Figures 25 created with BioRender.com.

Corresponding author

Correspondence to Nicholas J. Short.

Ethics declarations

Competing interests

EJ received research grants from Abbvie, Adaptive biotechnologies, Amgen, Pfizer, and Takeda; and consultancy fees from Abbvie, adaptive biotechnologies, Amgen, BMS, Genentech, Incyte, Novartis, Pfizer, and Takeda. HK has received research grants from AbbVie, Agios, Amgen, Ariad, Astex, BMS, Cyclacel, Daiichi-Sankyo, Immunogen, Jazz Pharma, Novartis, Pfizer, Actinium, and Takeda. NJS has served as consultant for Takeda Oncology, Pfizer, Jazz Pharmaceuticals, and Sanofi, reports receiving research grants from Takeda Oncology, Astellas Pharma Inc., Stemline and Xencor, and has received honoraria from Amgen, Astellas Pharma Inc., and Sanofi.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senapati, J., Jabbour, E., Kantarjian, H. et al. Pathogenesis and management of accelerated and blast phases of chronic myeloid leukemia. Leukemia 37, 5–17 (2023). https://doi.org/10.1038/s41375-022-01736-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01736-5

This article is cited by

Search

Quick links