Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CYTOGENETICS AND MOLECULAR GENETICS

Significance of hereditary gene alterations for the pathogenesis of adult bone marrow failure versus myeloid neoplasia

Abstract

Broader genetic screening has led to the growing recognition of the role of germline variants associated with adult bone marrow failure (BMF) and myeloid neoplasia (MN) not exclusively in children and young adults. In this study, we applied a germline variant panel to 3008 adult BMF and MN cases to assess the importance of germline genetics and its impact on disease phenotype and prognosis. In our cohort, up to 9.7% of BMF and 5.3% of MN cases carried germline variants. Our cohort also included heterozygous carriers of recessive traits, suggesting they contribute to the risk of BMF and MN. By gene category, variants of Fanconi anemia gene family represented the highest-frequency category for both BMF and MN cases, found in 4.9% and 1.7% cases, respectively. In addition, about 1.4% of BMF and 0.19% of MN cases harbored multiple germline variants affecting often functionally related genes as compound heterozygous. The burden of germline variants in BMF and MN was clearly associated with acquisition of monosomy 7. While BMF cases carrying germline variants showed similar overall survival as compared to the wild-type (WT) cases, MN cases with germline variants experienced a significantly shorter overall survival as compared to WT cases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The frequencies of germline variants and associations with clinical characteristics in bone marrow failure and myeloid neoplasia cases.
Fig. 2: The prevalence of germline variants by gene category in bone marrow failure and myeloid neoplasia.
Fig. 3: Clinical impact of germline variants in BMF.
Fig. 4: Clinical impact of germline variants in MN.

Similar content being viewed by others

Data availability

All the data that support the findings of this study are available within the Article and Supplementary Files. NGS targeted samples can be requested from the Cleveland Clinic by contacting the corresponding author (maciejj@ccf.org). Whole genome sequencing data can be requested from the Munich Leukemia laboratory (torsten.haferlach@mll.com).

References

  1. Keel SB, Scott A, Sanchez-Bonilla M, Ho PA, Gulsuner S, Pritchard CC, et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016;101:1343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feurstein S, Drazer M, Godley LA. Germline predisposition to hematopoietic malignancies. Hum Mol Genet. 2021;30:R225–35.

    Article  CAS  PubMed  Google Scholar 

  3. Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11:1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feurstein S, Churpek JE, Walsh T, Keel S, Hakkarainen M, Schroeder T, et al. Germline variants drive myelodysplastic syndrome in young adults. Leukemia. 2021;35:2439–44.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ramus SJ, Song H, Dicks E, Tyrer JP, Rosenthal AN, Intermaggio MP, et al. Germline mutations in the BRIP1, BARD1, PALB2, and NBN genes in women with ovarian cancer. J Natl Cancer Inst. 2015;107:djv214.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tischkowitz M, Xia B. PALB2/FANCN: recombining cancer and Fanconi anemia. Cancer Res. 2010;70:7353–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reilly CR, Myllymäki M, Redd R, Padmanaban S, Karunakaran D, Tesmer V, et al. The clinical and functional effects of TERT variants in myelodysplastic syndrome. Blood. 2021;138:898–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenwarth L, Caulier A, Lachaier E, Goursaud L, Marceau-Renaut A, Fournier E, et al. Hereditary predisposition to acute myeloid leukemia in older adults. Hemasphere. 2021;5:e552.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim B, Yun W, Lee ST, Choi JR, Yoo KH, Koo HH, et al. Prevalence and clinical implications of germline predisposition gene mutations in patients with acute myeloid leukemia. Sci Rep. 2020;10:14297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Przychodzen B, Makishima H, Sekeres MA, Balasubramanian SK, Thota S, Patel BJ, et al. Fanconi Anemia germline variants as susceptibility factors in aplastic anemia, MDS and AML. Oncotarget. 2018;9:2050–57.

    Article  PubMed  Google Scholar 

  11. Li ST, Wang J, Wei R, Shi R, Adema V, Nagata Y, et al. Rare germline variant contributions to myeloid malignancy susceptibility. Leukemia. 2020;34:1675–78.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gurnari C, Pagliuca S, Patel BJ, Awada H, Kongkiatkamon S, Terkawi L, et al. Implication of PIGA genotype on erythrocytes phenotype in Paroxysmal Nocturnal Hemoglobinuria. Leukemia. 2021;35:2431–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gurnari C, Graham AC, Efanov A, Pagliuca S, Durrani J, Awada H, et al. Frequency and perturbations of various peripheral blood cell populations before and after eculizumab treatment in paroxysmal nocturnal hemoglobinuria. Blood Cells Mol Dis. 2021;87:102528.

    Article  CAS  PubMed  Google Scholar 

  14. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  15. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059–74.

    Article  PubMed  Google Scholar 

  16. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang F, Long N, Anekpuritanang T, Bottomly D, Savage JC, Lee T, et al. Identification and prioritization of myeloid malignancy germline variants in a large cohort of adult AML patients. Blood. 2022;139:1208–21.

    Article  Google Scholar 

  19. Gurnari C, Wahida A, Pagliuca S, Durmaz A, Zawit M, Haferlach T, et al. A study of Telomerase Reverse Transcriptase rare variants in myeloid neoplasia. Hematol Oncol. 2022;40:812–7.

    Article  CAS  PubMed  Google Scholar 

  20. Adema V, Palomo L, Walter W, Mallo M, Hutter S, La Framboise T, et al. Pathophysiologic and clinical implications of molecular profiles resultant from deletion 5q. EBioMedicine. 2022;80:104059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kongkiatkamon S, Pagliuca S, Adema V, Nagata Y, Kerr CM, Walter W, et al. Molecular characterization of the histone acetyltransferase CREBBP/EP300 genes in myeloid neoplasia. Leukemia. 2022;36:1185–88.

    Article  CAS  PubMed  Google Scholar 

  22. Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–57.

    Article  CAS  PubMed  Google Scholar 

  23. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Markiewicz W, Amikam S, Roguin N, Riss E. Changing haemodynamics in patient with papillary muscle dysfunction. Br Heart J. 1975;37:445–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  PubMed  Google Scholar 

  27. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–67.

    Article  CAS  PubMed  Google Scholar 

  28. Gurnari C, Pagliuca S, Prata PH, Galimard JE, Catto LFB, Larcher L, et al. Clinical and molecular determinants of clonal evolution in aplastic anemia and paroxysmal nocturnal hemoglobinuria. J Clin Oncol. 2022;JCO2200710. https://doi.org/10.1200/JCO.22.00710. Online ahead of print.

  29. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.

    Article  CAS  PubMed  Google Scholar 

  30. Carnicer MJ, Lasa A, Buschbeck M, Serrano E, Carricondo M, Brunet S, et al. K313dup is a recurrent CEBPA mutation in de novo acute myeloid leukemia (AML). Ann Hematol. 2008;87:819–27.

    Article  CAS  PubMed  Google Scholar 

  31. Pezeshki A, Podder S, Kamel R, Corey SJ. Monosomy 7/del (7q) in inherited bone marrow failure syndromes: a systematic review. Pediatr Blood Cancer. 2017;64:e26714.

    Article  Google Scholar 

  32. Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016;48:792–97.

    Article  CAS  PubMed  Google Scholar 

  33. Sahoo SS, Pastor VB, Goodings C, Voss RK, Kozyra EJ, Szvetnik A, et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat Med. 2021;27:1806–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sébert M, Passet M, Raimbault A, Rahmé R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–44.

    Article  PubMed  Google Scholar 

  35. Voso MT, Gurnari C. Have we reached a molecular era in myelodysplastic syndromes? Hematol Am Soc Hematol Educ Program. 2021;2021:418–27.

    Article  Google Scholar 

Download references

Acknowledgements

We thank The Torsten Haferlach Leukämiediagnostik Stiftung to support this work. The authors also thank The Cancer Genome Atlas, The Beat AML Master Trial, and The German-Austrian Study Group for data accessibility.

Funding

This work was supported by an R35HL135795 (to JPM) and The Leukemia & Lymphoma Society TRP Award 6645-22 (to JPM). SF receives funding from the Olympia Morata Program of the Medical Faculty Heidelberg.

Author information

Authors and Affiliations

Authors

Contributions

Authorship contributions are as followed: YK designed the study, analyzed and interpreted the data, and wrote the manuscript; MZ, JD, WS analyzed sequencing data and participated in the original data collection; WSB, TK, BP, MM collected clinical data and edited the manuscript; CG, MAS, TLaF, VV provided important feedback to the manuscript; SF, LAG gave expert opinion of variants assessment and edited the manuscript; M.Meggendorfer, TH shared whole genome sequencing data and edited the manuscript; JPM conceived the study, interpreted the data and wrote the manuscript. All authors participated in discussions and interpretation of the data and results.

Corresponding author

Correspondence to Jaroslaw P. Maciejewski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, Y., Zawit, M., Durrani, J. et al. Significance of hereditary gene alterations for the pathogenesis of adult bone marrow failure versus myeloid neoplasia. Leukemia 36, 2827–2834 (2022). https://doi.org/10.1038/s41375-022-01729-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01729-4

This article is cited by

Search

Quick links