Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development of [211At]astatine-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ malignancies

Abstract

Radioimmunotherapy (RIT) has long been pursued to improve outcomes in acute leukemia and higher-risk myelodysplastic syndrome (MDS). Of increasing interest are alpha-particle-emitting radionuclides such as astatine-211 (211At) as they deliver large amounts of radiation over just a few cell diameters, enabling efficient and selective target cell kill. Here, we developed 211At-based RIT targeting CD123, an antigen widely displayed on acute leukemia and MDS cells including underlying neoplastic stem cells. We generated and characterized new murine monoclonal antibodies (mAbs) specific for human CD123 and selected four, all of which were internalized by CD123+ target cells, for further characterization. All mAbs could be conjugated to a boron cage, isothiocyanatophenethyl-ureido-closo-decaborate(2-) (B10), and labeled with 211At. CD123+ cell targeting studies in immunodeficient mice demonstrated specific uptake of 211At-labeled anti-CD123 mAbs in human CD123+ MOLM-13 cell tumors in the flank. In mice injected intravenously with MOLM-13 cells or a CD123NULL MOLM-13 subline, a single dose of up to 40 µCi of 211At delivered via anti-CD123 mAb decreased tumor burdens and substantially prolonged survival dose dependently in mice bearing CD123+ but not CD123– leukemia xenografts, demonstrating potent and target-specific in vivo anti-leukemia efficacy. These data support the further development of 211At-CD123 RIT toward clinical application.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Binding characteristics of new anti-CD123 mAbs.
Fig. 2: Internalization of anti-CD123 mAbs.
Fig. 3: In vitro cytotoxic properties of 10C4 and 10C4-B10.
Fig. 4: In vivo CD123+ cell targeting with 211At-CD123 RIT.
Fig. 5: In vivo anti-AML efficacy of 211At-CD123 RIT.
Fig. 6: Target antigen specificity of 211At-CD123 RIT in vivo.

Similar content being viewed by others

Data availability

For original data and reagents, please contact the corresponding author.

References

  1. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020;395:1146–62.

    Article  CAS  PubMed  Google Scholar 

  3. DeAngelo DJ, Jabbour E, Advani A. Recent advances in managing acute lymphoblastic leukemia. Am Soc Clin Oncol Educ Book. 2020;40:330–42.

    Article  PubMed  Google Scholar 

  4. Döhner H, Wei AH, Löwenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18:577–90.

    Article  PubMed  Google Scholar 

  5. Platzbecker U. Treatment of MDS. Blood. 2019;133:1096–107.

    Article  CAS  PubMed  Google Scholar 

  6. Cazzola M. Myelodysplastic syndromes. N Engl J Med. 2020;383:1358–74.

    Article  CAS  PubMed  Google Scholar 

  7. Kotzerke J, Bunjes D, Scheinberg DA. Radioimmunoconjugates in acute leukemia treatment: the future is radiant. Bone Marrow Transplant. 2005;36:1021–6.

    Article  CAS  PubMed  Google Scholar 

  8. Bodet-Milin C, Kraeber-Bodéré F, Eugène T, Guérard F, Gaschet J, Bailly C, et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016;46:135–46.

    Article  PubMed  Google Scholar 

  9. Ali AM, Dehdashti F, DiPersio JF, Cashen AF. Radioimmunotherapy-based conditioning for hematopoietic stem cell transplantation: another step forward. Blood Rev. 2016;30:389–99.

    Article  PubMed  Google Scholar 

  10. Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours. Nat Rev Cancer. 2015;15:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting alpha-particles or Auger electrons. Adv Drug Deliv Rev. 2017;109:102–18.

    Article  CAS  PubMed  Google Scholar 

  12. Nikula TK, McDevitt MR, Finn RD, Wu C, Kozak RW, Garmestani K, et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med. 1999;40:166–76.

    CAS  PubMed  Google Scholar 

  13. Sawant SG, Randers-Pehrson G, Metting NF, Hall EJ. Adaptive response and the bystander effect induced by radiation in C3H 10T(1/2) cells in culture. Radiat Res. 2001;156:177–80.

    Article  CAS  PubMed  Google Scholar 

  14. Aurlien E, Kvinnsland Y, Larsen RH, Bruland ØS. Radiation doses to non-Hodgkin’s lymphoma cells and normal bone marrow exposed in vitro. Comparison of an alpha-emitting radioimmunoconjugate and external gamma-irradiation. Int J Radiat Biol. 2002;78:133–42.

    Article  CAS  PubMed  Google Scholar 

  15. Dahle J, Borrebæk J, Jonasdottir TJ, Hjelmerud AK, Melhus KB, Bruland ØS, et al. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood. 2007;110:2049–56.

    Article  CAS  PubMed  Google Scholar 

  16. Finn LE, Levy M, Orozco JJ, Park JH, Atallah E, Craig M, et al. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with previously untreated acute myeloid leukemia (AML) unfit for intensive chemotherapy [abstract]. Blood. 2017;130:2638.

    Google Scholar 

  17. Atallah EL, Orozco JJ, Craig M, Levy MY, Finn LE, Khan SS, et al. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with untreated acute myeloid leukemia (AML) - interim analysis of 1.5 µCi/kg/dose [abstract]. Blood. 2018;132:1457.

    Article  Google Scholar 

  18. Testa U, Pelosi E, Castelli G. CD123 as a therapeutic target in the treatment of hematological malignancies. Cancers. 2019;11:1358.

  19. Sugita M, Guzman ML. CD123 as a therapeutic target against malignant stem cells. Hematol Oncol Clin North Am. 2020;34:553–64.

    Article  PubMed  Google Scholar 

  20. El Achi H, Dupont E, Paul S, Khoury JD. CD123 as a biomarker in hematolymphoid malignancies: principles of detection and targeted therapies. Cancers. 2020;12:3087.

  21. Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma. 2021;62:2568–86.

    Article  CAS  PubMed  Google Scholar 

  22. Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID. Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood. 2005;105:1295–302.

    Article  CAS  PubMed  Google Scholar 

  23. Wilbur DS, Chyan MK, Nakamae H, Chen Y, Hamlin DK, Santos EB, et al. Reagents for astatination of biomolecules. 6. An intact antibody conjugated with a maleimido-closo-decaborate(2-) reagent via sulfhydryl groups had considerably higher kidney concentrations than the same antibody conjugated with an isothiocyanato-closo-decaborate(2-) reagent via lysine amines. Bioconjug Chem. 2012;23:409–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gagnon K, Risler K, Pal S, Hamlin D, Orzechowski J, Pavan R, et al. Design and evaluation of an external high-current target for production of 211At. J Label Compd Radiopharm. 2012;55:436–40.

    Article  CAS  Google Scholar 

  25. Balkin ER, Hamlin DK, Gagnon K, Chyan MK, Pal S, Watanabe S. et al. Evaluation of a wet chemistry method for isolation of cyclotron produced [At-211] astatine. Appl Sci (Basel). 2013;3:636–55.

    Article  Google Scholar 

  26. Vergez F, Green AS, Tamburini J, Sarry JE, Gaillard B, Cornillet-Lefebvre P, et al. High levels of CD34+CD38low/-CD123+ blasts are predictive of an adverse outcome in acute myeloid leukemia: a Groupe Ouest-Est des Leucemies Aigues et Maladies du Sang (GOELAMS) study. Haematologica. 2011;96:1792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mishra P, Tyagi S, Sharma R, Halder R, Pati HP, Saxena R, et al. Proportion of CD34(+)CD38(-)CD123(+) leukemia stem cells at diagnosis varies in ELN risk groups and an emerging novel marker for prognosticating the intermediate risk patients of acute myeloid leukemia: a prospective study. Indian J Hematol Blood Transfus. 2021;; 37:391–7.

    Article  PubMed  Google Scholar 

  28. Perriello VM, Gionfriddo I, Rossi R, Milano F, Mezzasoma F, Marra A, et al. CD123 Is consistently expressed on NPM1-mutated AML cells. Cancers (Basel). 2021;13:496.

  29. Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, et al. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood. 2021;137:1377–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pemmaraju N. Targeting the p-D-C: easy as C-D-1-2-3? Blood. 2021;137:1277–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pemmaraju N, Lane AA, Sweet KL, Stein AS, Vasu S, Blum W, et al. Tagraxofusp in blastic plasmacytoid dendritic-cell neoplasm. N Engl J Med. 2019;380:1628–37.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson NR, Pemmaraju N. Evaluating tagraxofusp for the treatment of blastic plasmacytoid dendritic cell neoplasm (BPDCN). Expert Opin Pharmacother. 2022;23:431–8.

    Article  CAS  PubMed  Google Scholar 

  33. Lane AA, Stein AS, Garcia JS, Garzon JL, Galinsky I, Luskin MR, et al. Safety and efficacy of combining tagraxofusp (SL-401) with azacitidine or azacitidine and venetoclax in a phase 1b study for CD123 positive AML, MDS, or BPDCN [abstract]. Blood. 2021;138:2346.

    Article  Google Scholar 

  34. Daver N, Aribi A, Montesinos P, Roboz GJ, Wang ES, Walter RB, et al. Safety and efficacy form a phase 1b/2 study of IMGN632 in combination with azacitidine and venetoclax for patients with CD123-positive acute myeloid leukemia [abstract]. Blood. 2021;138:372.

    Article  Google Scholar 

  35. Uy GL, Aldoss I, Foster MC, Sayre PH, Wieduwilt MJ, Advani AS, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137:751–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Uckun FM, Lin TL, Mims AS, Patel P, Lee C, Shahidzadeh A, et al. A clinical phase 1B study of the CD3xCD123 bispecific antibody APVO436 in patients with relapsed/refractory acute myeloid leukemia or myelodysplastic syndrome. Cancers (Basel). 2021;13:4113.

  37. Montesinos P, Roboz GJ, Bulabois CE, Subklewe M, Platzbecker U, Ofran Y, et al. Safety and efficacy of talacotuzumab plus decitabine or decitabine alone in patients with acute myeloid leukemia not eligible for chemotherapy: results from a multicenter, randomized, phase 2/3 study. Leukemia. 2021;35:62–74.

    Article  CAS  PubMed  Google Scholar 

  38. Aldoss I, Clark M, Song JY, Pullarkat V. Targeting the alpha subunit of IL-3 receptor (CD123) in patients with acute leukemia. Hum Vaccin Immunother. 2020;16:2341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Leyton JV, Gao C, Williams B, Keating A, Minden M, Reilly RM. A radiolabeled antibody targeting CD123(+) leukemia stem cells - initial radioimmunotherapy studies in NOD/SCID mice engrafted with primary human AML. Leuk Res Rep. 2015;4:55–59.

    PubMed  PubMed Central  Google Scholar 

  40. Gao C, Leyton JV, Schimmer AD, Minden M, Reilly RM. Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123(+)/CD131(-) phenotype of leukemia stem cells. Appl Radiat Isot. 2016;110:1–7.

    Article  CAS  PubMed  Google Scholar 

  41. Bergstrom D, Leyton JV, Zereshkian A, Chan C, Cai Z, Reilly RM. Paradoxical effects of Auger electron-emitting (111)In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45(+) cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice. Nucl Med Biol. 2016;43:635–41.

    Article  CAS  PubMed  Google Scholar 

  42. Orozco JJ, Bäck T, Kenoyer A, Balkin ER, Hamlin DK, Wilbur DS, et al. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Green DJ, Shadman M, Jones JC, Frayo SL, Kenoyer AL, Hylarides MD, et al. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. Blood. 2015;125:2111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Steen S, Comstock ML, Orozco JJ, Hamlin DK, Wilbur DS, Jones JC, et al. The alpha-emitter astatine-211 targeted to CD38 can eradicate multiple myeloma in a disseminated disease model. Blood. 2019;134:1247–56.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gill S, Tasian SK, Ruella M, Shestova O, Li Y, Porter DL, et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baroni ML, Sanchez Martinez D, Gutierrez Aguera F, Roca Ho H, Castella M, Zanetti SR, et al. 41BB-based and CD28-based CD123-redirected T-cells ablate human normal hematopoiesis in vivo. J Immunother Cancer. 2020;8:e000845.

  47. Pizzitola I, Anjos-Afonso F, Rouault-Pierre K, Lassailly F, Tettamanti S, Spinelli O, et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia. 2014;28:1596–605.

    Article  CAS  PubMed  Google Scholar 

  48. Stevens BM, Zhang W, Pollyea DA, Winters A, Gutman J, Smith C, et al. CD123 CAR T cells for the treatment of myelodysplastic syndrome. Exp Hematol. 2019;74:52–63.e53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol. 2017;3:e170580.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Short NJ, Zhou S, Fu C, Berry DA, Walter RB, Freeman SD, et al. Impact of measurable residual disease on survival outcomes in patients with acute myeloid leukemia: a meta-analysis. JAMA Oncol. 2020;6:1890–9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Colin E. Correnti, Dr Christopher Mehlin, Dr James M. Olson, Jane Carter, and other members of the Molecular Design and Therapeutics (MDT) core facility as well as Benjamin G. Hoffstrom of the Antibody Technology Resource at Fred Hutchinson Cancer Research Center for help with the generation of anti-CD123 mAbs. Research reported in this publication was supported by the Leukemia & Lymphoma Society (Translational Research Program, grant 6489-16), the American Society of Hematology (Bridge Grant), the St. Baldrick Foundation (Emily Beazley Kures for Kids Research Grant), and the National Institutes of Health/National Cancer Institute (NIH/NCI; P30-CA015704). The Fred Hutchinson Cancer Research Center Antibody Technology Resource received support from the M.J. Murdock Charitable Trust.

Author information

Authors and Affiliations

Authors

Contributions

GSL and JJO designed and performed research and analyzed and interpreted data. ARK, MCL, JH, DKH, SLD, and MLC performed research and analyzed and interpreted data. DSW, SO, BMS, and DJG analyzed and interpreted data. RBW conceptualized and designed this study and participated in data analysis and interpretation and drafting of the manuscript. All authors revised the manuscript critically and gave final approval to submit for publication.

Corresponding author

Correspondence to Roland B. Walter.

Ethics declarations

Competing interests

GSL, JJO, and RBW have filed a provisional patent application related to 211At-CD123 RIT. All other authors declare no competing conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laszlo, G.S., Orozco, J.J., Kehret, A.R. et al. Development of [211At]astatine-based anti-CD123 radioimmunotherapy for acute leukemias and other CD123+ malignancies. Leukemia 36, 1485–1491 (2022). https://doi.org/10.1038/s41375-022-01580-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01580-7

This article is cited by

Search

Quick links