Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15

A Correction to this article was published on 25 August 2023

This article has been updated

Abstract

To determine whether antigen presentation by HLA-DR on hematopoietic stem progenitor cells (HSPCs) is involved in the development of acquired aplastic anemia (AA), we studied the HLA-DR expression on CD45dimCD34+CD38+ cells in the peripheral blood of 61 AA patients including 23 patients possessing HLA-class I allele-lacking (HLA-class I[−]) leukocytes. HLA-DR-lacking (DR[−]) cells accounted for 13.0–57.1% of the total HSPCs in seven (11.5%) patients with HLA-DR15 who did not possess HLA-class I(–) leukocytes. The incubation of sorted DR(–) HSPCs in the presence of IFN-γ for 72 h resulted in the full restoration of the DR expression. A comparison of the transcriptome profile between DR(–) and DR(+) HSPCs revealed the lower expression of immune response-related genes including co-stimulatory molecules (e.g., CD48, CD74, and CD86) in DR(–) cells, which was not evident in HLA-class I(–) HSPCs. DR(–) cells were exclusively detected in GPI(+) HSPCs in four patients whose HSPCs could be analyzed separately for GPI(+) and GPI(–) HSPCs. These findings suggest that CD4+ T cells specific to antigens presented by HLA-DR15 on HSPCs may contribute to the development of AA as well as the immune escape of GPI(–) HSPCs in a distinct way from CD8+ T cells recognizing HLA-class I-restricted antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The loss of the HLA-DR expression on hematopoietic stem progenitor cells (HSPCs) in the peripheral blood of acquired aplastic anemia (AA) patients carrying DR15.
Fig. 2: HLA-DR15 loss due to 6pLOH and its relationship with CsA dependency.
Fig. 3: Mechanisms underlying the HLA-DR loss on HSPCs and gene expression profiles unique to HLA-DR(-) HSPCs.
Fig. 4: The relationship between DR(-) HSPCs and GPI(-) HSPCs.

Similar content being viewed by others

Change history

References

  1. Brodsky RA, Jones RJ. Aplastic anaemia. Lancet. 2005;365:1647–56. 7–13

    Article  CAS  PubMed  Google Scholar 

  2. Young NS, Calado RT, Scheinberg P. Current concepts in the pathophysiology and treatment of aplastic anemia. Blood. 2006;108:2509–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Young NS. Aplastic Anemia. N. Engl J Med. 2018;379:1643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katagiri T, Sato-Otsubo A, Kashiwase K, Morishima S, Sato Y, Mori Y, et al. Frequent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired aplastic anemia. Blood. 2011;118:6601–9.

    Article  CAS  PubMed  Google Scholar 

  5. Afable MG 2nd, Wlodarski M, Makishima H, Shaik M, Sekeres MA, Tiu RV, et al. SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117:6876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maruyama H, Katagiri T, Kashiwase K, Shiina T, Sato-Otsubo A, Zaimoku Y, et al. Clinical significance and origin of leukocytes that lack HLA-A allele expression in patients with acquired aplastic anemia. Exp Hematol. 2016;44:931–9. Octe933

    Article  CAS  PubMed  Google Scholar 

  7. Zaimoku Y, Takamatsu H, Hosomichi K, Ozawa T, Nakagawa N, Imi T, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017;129:2908–16.

    Article  CAS  PubMed  Google Scholar 

  8. Babushok DV, Duke JL, Xie HM, Stanley N, Atienza J, Perdigones N, et al. Somatic HLA mutations expose the role of class i-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017;1:1900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizumaki H, Hosomichi K, Hosokawa K, Yoroidaka T, Imi T, Zaimoku Y, et al. A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica. 2021;106:1581–90.

    Article  CAS  PubMed  Google Scholar 

  10. Hosokawa K, Mizumaki H, Yoroidaka T, Maruyama H, Imi T, Tsuji N, et al. HLA class I allele-lacking leukocytes predict rare clonal evolution to MDS/AML in patients with acquired aplastic anemia. Blood. 2021;137:3576–80.

    Article  CAS  PubMed  Google Scholar 

  11. Zeng W, Nakao S, Takamatsu H, Yachie A, Takami A, Kondo Y, et al. Characterization of T-cell repertoire of the bone marrow in immune-mediated aplastic anemia: evidence for the involvement of antigen-driven T-cell response in cyclosporine-dependent aplastic anemia. Blood. 1999;93:3008–16.

    Article  CAS  PubMed  Google Scholar 

  12. Nakao S, Takamatsu H, Chuhjo T, Ueda M, Shiobara S, Matsuda T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994;84:4257–61.

    Article  CAS  PubMed  Google Scholar 

  13. Maciejewski JP, Follmann D, Nakamura R, Saunthararajah Y, Rivera CE, Simonis T, et al. Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia syndrome. Blood. 2001;98:3513–9.

    Article  CAS  PubMed  Google Scholar 

  14. Sugimori C, Yamazaki H, Feng X, Mochizuki K, Kondo Y, Takami A, et al. Roles of DRB1 *1501 and DRB1 *1502 in the pathogenesis of aplastic anemia. Exp Hematol. 2007;35:13–20.

    Article  CAS  PubMed  Google Scholar 

  15. Saunthararajah Y, Nakamura R, Nam JM, Robyn J, Loberiza F, Maciejewski JP, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood. 2002;100:1570–4.

    Article  CAS  PubMed  Google Scholar 

  16. Pagliuca S, Gurnari C, Awada H, Kishtagari A, Kongkiatkamon S, Terkawi L, et al. The similarity of class II HLA genotypes defines patterns of autoreactivity in idiopathic bone marrow failure disorders. Blood. 2021;138:2781–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Christopher MJ, Petti AA, Rettig MP, Miller CA, Chendamarai E, Duncavage EJ, et al. Immune escape of relapsed aml cells after allogeneic transplantation. N. Engl J Med. 2018;379:2330–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Toffalori C, Zito L, Gambacorta V, Riba M, Oliveira G, Bucci G, et al. Immune signature drives leukemia escape and relapse after hematopoietic cell transplantation. Nat Med. 2019;25:603–11.

    Article  CAS  PubMed  Google Scholar 

  19. Rimsza LM, Roberts RA, Miller TP, Unger JM, LeBlanc M, Braziel RM, et al. Loss of MHC class II gene and protein expression in diffuse large B-cell lymphoma is related to decreased tumor immunosurveillance and poor patient survival regardless of other prognostic factors: a follow-up study from the Leukemia and Lymphoma Molecular Profiling Project. Blood. 2004;103:4251–8.

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi M, Miyoshi H, Asano N, Yoshida N, Yamada K, Yanagida E, et al. Human leukocyte antigen class II expression is a good prognostic factor in adult T-cell leukemia/lymphoma. Haematologica. 2019;104:1626–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Altomonte M, Fonsatti E, Visintin A, Maio M. Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene. 2003;22:6564–9.

    Article  CAS  PubMed  Google Scholar 

  22. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27:5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Seliger B, Kloor M, Ferrone S. HLA class II antigen-processing pathway in tumors: Molecular defects and clinical relevance. Oncoimmunology. 2017;6:e1171447.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Olnes MJ, Scheinberg P, Calvo KR, Desmond R, Tang Y, Dumitriu B, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N. Engl J Med. 2012;367:11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosenfeld S, Follmann D, Nunez O, Young NS. Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome. Jama. 2003;289:1130–5.

    Article  CAS  PubMed  Google Scholar 

  26. Hosokawa K, Sugimori C, Ishiyama K, Takamatsu H, Noji H, Shichishima T, et al. Establishment of a flow cytometry assay for detecting paroxysmal nocturnal hemoglobinuria-type cells specific to patients with bone marrow failure. Ann Hematol. 2018;97:2289–97.

    Article  CAS  PubMed  Google Scholar 

  27. Hosokawa K, Ishiyama K, Ikemoto T, Sugimori C, Noji H, Shichishima T, et al. The clinical significance of PNH-phenotype cells accounting for <0.01% of total granulocytes detected by the Clinical and Laboratory Standards Institute methods in patients with bone marrow failure. Ann Hematol. 2021;100:1975–82.

    Article  CAS  PubMed  Google Scholar 

  28. Fali T, Fabre-Mersseman V, Yamamoto T, Bayard C, Papagno L, Fastenackels S, et al. Elderly human hematopoietic progenitor cells express cellular senescence markers and are more susceptible to pyroptosis. JCI Insight. 2018;3:e95319.

    Article  Google Scholar 

  29. Pellin D, Loperfido M, Baricordi C, Wolock SL, Montepeloso A, Weinberg OK, et al. A comprehensive single cell transcriptional landscape of human hematopoietic progenitors. Nat Commun. 2019;10:2395.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grey W, Chauhan R, Piganeau M, Huerga Encabo H, Garcia-Albornoz M, McDonald NQ, et al. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood. 2020;136:2535–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du W, Li XE, Sipple J, Pang Q. Overexpression of IL-3Rα on CD34+CD38- stem cells defines leukemia-initiating cells in Fanconi anemia AML. Blood. 2011;117:4243–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013;10:1096–8.

    Article  CAS  PubMed  Google Scholar 

  33. Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell. 2014;15:507–22.

    Article  CAS  PubMed  Google Scholar 

  34. Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinforma. 2018;19:534.

    Article  CAS  Google Scholar 

  35. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48:452–8.

    Article  CAS  Google Scholar 

  37. Falkenburg JH, Fibbe WE, Goselink HM, Van Rood JJ, Jansen J. Human hematopoietic progenitor cells in long-term cultures express HLA-DR antigens and lack HLA-DQ antigens. J Exp Med. 1985;162:1359–69.

    Article  CAS  PubMed  Google Scholar 

  38. Kawashima M, Ohashi J, Nishida N, Tokunaga K. Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population. PLoS One. 2012;7:e46806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Latchman Y, McKay PF, Reiser H. Identification of the 2B4 molecule as a counter-receptor for CD48. J Immunol. 1998;161:5809–12.

    Article  CAS  PubMed  Google Scholar 

  40. González-Cabrero J, Wise CJ, Latchman Y, Freeman GJ, Sharpe AH, Reiser H. CD48-deficient mice have a pronounced defect in CD4(+) T cell activation. Proc Natl Acad Sci USA. 1999;96:1019–23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Linsley PS, Brady W, Grosmaire L, Aruffo A, Damle NK, Ledbetter JA. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J Exp Med. 1991;173:721–30.

    Article  CAS  PubMed  Google Scholar 

  42. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA Jr, Lombard LA, et al. Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science. 1993;262:909–11.

    Article  CAS  PubMed  Google Scholar 

  43. Gambacorta V, Gnani D, Zito L, Beretta S, Zanotti L, Giacomo O, et al. Integrated Epigenetic Profiling Identifies EZH2 As a Therapeutic Target to Re-Establish Immune Recognition of Leukemia Relapses with Loss of HLA Class II Expression. Blood. 2019;134:514–514. Supplement_1

    Article  Google Scholar 

  44. Gargiulo L, Zaimoku Y, Scappini B, Maruyama H, Ohumi R, Luzzatto L, et al. Glycosylphosphatidylinositol-specific T cells, IFN-γ-producing T cells, and pathogenesis of idiopathic aplastic anemia. Blood. 2017;129:388–92. Jan 19

    Article  CAS  PubMed  Google Scholar 

  45. Luzzatto L, Risitano AM. Advances in understanding the pathogenesis of acquired aplastic anaemia. Br J Haematol. 2018;182:758–76.

    Article  PubMed  Google Scholar 

  46. Tanabe M, Hosokawa K, Nguyen MAT, Nakagawa N, Maruyama K, Tsuji N, et al. The GPI-anchored protein CD109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-β. Leukemia. 2022;36:847–55.

    Article  CAS  PubMed  Google Scholar 

  47. Murakami Y, Kosaka H, Maeda Y, Nishimura J, Inoue N, Ohishi K, et al. Inefficient response of T lymphocytes to glycosylphosphatidylinositol anchor-negative cells: implications for paroxysmal nocturnal hemoglobinuria. Blood. 2002;100:4116–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by MEXT KAKENHI (Grant-in-Aid for Scientific Research (B), Grant Number: 16H05335 and 19H03686) to SN, MEXT KAKENHI (Grant-in-Aid for Young Scientists (B), Grant Number: 19K17823) to KH, MEXT KAKENHI (Grant-in-Aid for Scientific Research (C), Grant Number: 21K08367) to KH. The authors thank the patients and donors and their physicians for contributing to this study and the Advanced Preventive Medical Sciences Research Center, Kanazawa University for the use of facilities. The authors thank Rie Ohmi (Kanazawa University) for her excellent technical assistance. We thank all patients and their physicians of participating institutions who contributed to this study. NT is a PhD candidate at Kanazawa University and this work is submitted in partial fulfillment of the requirements for the PhD.

Author information

Authors and Affiliations

Authors

Contributions

NT, KH, and SN designed the research, analyzed the data, and wrote the manuscript. NT, KH, RU, MT, HT, KI, HY, and SN recruited patients and healthy volunteers to participate in the study. NT and KH performed flow cytometry. TK and SO performed SNP array analysis. TO, HK, RU, and HT generated anti-HLA-B61 monoclonal antibody. NT performed most of the in vitro experiments. NT and KH contributed equally to this work. All authors critically reviewed the manuscript and approved the submission of the final manuscript.

Corresponding author

Correspondence to Shinji Nakao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The author Yoshitaka Zaimoku was added.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, N., Hosokawa, K., Urushihara, R. et al. Frequent HLA-DR loss on hematopoietic stem progenitor cells in patients with cyclosporine-dependent aplastic anemia carrying HLA-DR15. Leukemia 36, 1666–1675 (2022). https://doi.org/10.1038/s41375-022-01549-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01549-6

This article is cited by

Search

Quick links