Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MULTIPLE MYELOMA, GAMMOPATHIES

Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma

Abstract

Interrogation of cell-free DNA (cfDNA) represents an emerging approach to non-invasively estimate disease burden in multiple myeloma (MM). Here, we examined low-pass whole genome sequencing (LPWGS) of cfDNA for its predictive value in relapsed/ refractory MM (RRMM). We observed that cfDNA positivity, defined as ≥10% tumor fraction by LPWGS, was associated with significantly shorter progression-free survival (PFS) in an exploratory test cohort of 16 patients who were actively treated on diverse regimens. We prospectively determined the predictive value of cfDNA in 86 samples from 45 RRMM patients treated with elotuzumab, pomalidomide, bortezomib, and dexamethasone in a phase II clinical trial (NCT02718833). PFS in patients with tumor-positive and -negative cfDNA after two cycles of treatment was 1.6 and 17.6 months, respectively (HR 7.6, P < 0.0001). Multivariate hazard modelling confirmed cfDNA as independent risk factor (HR 96.6, P = 6.92e-05). While correlating with serum-free light chains and bone marrow, cfDNA additionally discriminated patients with poor PFS among those with the same response by IMWG criteria. In summary, detectability of MM-derived cfDNA, as a measure of substantial tumor burden with therapy, independently predicts poor PFS and may provide refinement for standard-of-care response parameters to identify patients with poor response to treatment earlier than is currently feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tumor fraction in cfDNA as proxy for tumor burden and as prognostic marker.
Fig. 2: Tumor fraction in cfDNA is predictive of progression-free survival.
Fig. 3: Comparing MM-derived cfDNA with serological parameters and bone marrow infiltration.
Fig. 4: Refining IMWG response criteria with cfDNA as an orthogonal marker of response.
Fig. 5: Cox proportional hazard model for PFS and cfDNA tumor fraction after two cycles of elo-PVD.

Similar content being viewed by others

References

  1. Kumar SK, Dispenzieri A, Lacy MQ, Gertz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–28.

    Article  CAS  PubMed  Google Scholar 

  2. Keats JJ, Chesi M, Egan JB, Garbitt VM, Palmer SE, Braggio E, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012;120:1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  Google Scholar 

  5. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23:6333–38.

  6. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morgan GJ, Walker BA, Davies FE. The genetic architecture of multiple myeloma. Nat Rev Cancer. 2012;12:335–48.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood. 2008;111:2516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kumar SK, Therneau TM, Gertz MA, Lacy MQ, Dispenzieri A, Rajkumar SV, et al. Clinical course of patients with relapsed multiple myeloma. Mayo Clin Proc. 2004;79:867–74.

    Article  CAS  PubMed  Google Scholar 

  10. Landgren O, Rajkumar SV. New Developments in Diagnosis, Prognosis, and Assessment of Response in Multiple Myeloma. Clin Cancer Res. 2016;22:5428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8:268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Caers J, Paiva B, Zamagni E, Leleu X, Bladé J, Kristinsson SY, et al. Diagnosis, treatment, and response assessment in solitary plasmacytoma: updated recommendations from a European Expert Panel. J Hematol Oncol. 2018;11:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chawla SS, Kumar SK, Dispenzieri A, Greenberg AJ, Larson DR, Kyle RA et al. Clinical Course and Prognosis of Non-Secretory Multiple Myeloma. Eur J Haematol. 2015. https://doi.org/10.1111/ejh.12534.

  14. Dupuis MM, Tuchman SA. Non-secretory multiple myeloma: from biology to clinical management. OncoTargets Ther. 2016;9:7583–90.

    Article  CAS  Google Scholar 

  15. Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. Blood Cancer J. 2017;7:e590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mithraprabhu S, Chen M, Savvidou I, Reale A, Spencer A Liquid biopsy: an evolving paradigm for the biological characterisation of plasma cell disorders. Leukemia 2021. https://doi.org/10.1038/s41375-021-01339-6.

  17. Adalsteinsson VA, Ha G, Freeman SS, Choudhury AD, Stover DG, Parsons HA et al. Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nat Commun. 2017; 8. https://doi.org/10.1038/s41467-017-00965-y.

  18. Leary RJ, Kinde I, Diehl F, Schmidt K, Clouser C, Duncan C, et al. Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med. 2010;2:20ra14.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Murtaza M, Dawson S-J, Tsui DWY, Gale D, Forshew T, Piskorz AM, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  CAS  PubMed  Google Scholar 

  20. Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14:985–90.

    Article  CAS  PubMed  Google Scholar 

  21. Scherer F, Kurtz DM, Newman AM, Stehr H, Craig AFM, Esfahani MS, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016;8:364ra155.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Corcoran RB, Chabner BA. Cell-free DNA Analysis in Cancer. N. Engl J Med. 2019;380:501–2.

    Article  PubMed  Google Scholar 

  23. Manier S, Park J, Capelletti M, Bustoros M, Freeman SS, Ha G, et al. Whole-exome sequencing of cell-free DNA and circulating tumor cells in multiple myeloma. Nat Commun. 2018;9:1691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo G, Raje NS, Seifer C, Kloeber J, Isenhart R, Ha G, et al. Genomic discovery and clonal tracking in multiple myeloma by cell-free DNA sequencing. Leukemia. 2018;32:1838–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gerber B, Manzoni M, Spina V, Bruscaggin A, Lionetti M, Fabris S, et al. Circulating tumor DNA as a liquid biopsy in plasma cell dyscrasias. Haematologica. 2018;103:e245–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mithraprabhu S, Khong T, Ramachandran M, Chow A, Klarica D, Mai L, et al. Circulating tumour DNA analysis demonstrates spatial mutational heterogeneity that coincides with disease relapse in myeloma. Leukemia. 2017;31:1695–705.

    Article  CAS  PubMed  Google Scholar 

  27. Mithraprabhu S, Morley R, Khong T, Kalff A, Bergin K, Hocking J, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia. 2019;33:2022–33.

    Article  CAS  PubMed  Google Scholar 

  28. Kis O, Kaedbey R, Chow S, Danesh A, Dowar M, Li T, et al. Circulating tumour DNA sequence analysis as an alternative to multiple myeloma bone marrow aspirates. Nat Commun. 2017;8:15086.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rustad EH, Coward E, Skytøen ER, Misund K, Holien T, Standal T, et al. Monitoring multiple myeloma by quantification of recurrent mutations in serum. Haematologica. 2017;102:1266–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Q, Huang HJ, Ma J, Wang Y, Cao Z, Karlin-Neumann G, et al. RAS/RAF mutations in tumor samples and cell-free DNA from plasma and bone marrow aspirates in multiple myeloma patients. J Cancer. 2020;11:3543–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oberle A, Brandt A, Voigtlaender M, Thiele B, Radloff J, Schulenkorf A, et al. Monitoring multiple myeloma by next-generation sequencing of V(D)J rearrangements from circulating myeloma cells and cell-free myeloma DNA. Haematologica. 2017;102:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biancon G, Gimondi S, Vendramin A, Carniti C, Corradini P. Noninvasive molecular monitoring in multiple myeloma patients using cell-free tumor DNA: A pilot study. J Mol Diagn. 2018;20:859–70.

    Article  CAS  PubMed  Google Scholar 

  33. Mazzotti C, Buisson L, Maheo S, Perrot A, Chretien M-L, Leleu X, et al. Myeloma MRD by deep sequencing from circulating tumor DNA does not correlate with results obtained in the bone marrow. Blood Adv. 2018;2:2811–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deshpande S, Tytarenko RG, Wang Y, Boyle EM, Ashby C, Schinke CD, et al. Monitoring treatment response and disease progression in myeloma with circulating cell-free DNA. Eur J Haematol. 2021;106:230–40.

    Article  CAS  PubMed  Google Scholar 

  35. Mithraprabhu S, Sirdesai S, Chen M, Khong T, Spencer A. Circulating tumour DNA analysis for tumour genome characterisation and monitoring disease burden in extramedullary multiple myeloma. Int J Mol Sci. 2018; 19. https://doi.org/10.3390/ijms19071858.

  36. Manzoni M, Pompa A, Fabris S, Pelizzoni F, Ciceri G, Seia M, et al. Limits and applications of genomic analysis of circulating tumor DNA as a liquid biopsy in asymptomatic forms of multiple myeloma. HemaSphere. 2020;4:e402.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yee AJ, Laubach JP, Campagnaro EL, Lipe BC, Nadeem O, Friedman RS, et al. A phase II study of elotuzumab in combination with pomalidomide, bortezomib, and dexamethasone in relapsed and refractory multiple myeloma. Blood. 2019;134:3169.

    Article  Google Scholar 

  38. Ihorst G, Waldschmidt J, Schumacher M, Wäsch R, Engelhardt M. Analysis of survival by tumor response: have we learnt any better? Ann Hematol. 2015;94:1615–6.

    Article  PubMed  Google Scholar 

  39. Chng WJ, Dispenzieri A, Chim C-S, Fonseca R, Goldschmidt H, Lentzsch S, et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia. 2014;28:269–77.

    Article  CAS  PubMed  Google Scholar 

  40. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau J-L, et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol. 2009;27:4585–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kortuem KM, Braggio E, Bruins L, Barrio S, Shi CS, Zhu YX, et al. Panel sequencing for clinically oriented variant screening and copy number detection in 142 untreated multiple myeloma patients. Blood Cancer J. 2016;6:e397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Frede J, Anand P, Sotudeh N, Pinto RA, Nair MS, Stuart H et al. Dynamic transcriptional reprogramming leads to immunotherapeutic vulnerabilities in myeloma. Nat Cell Biol. 2021. https://doi.org/10.1038/s41556-021-00766-y.

  43. Waldschmidt JM, Kloeber JA, Anand P, Frede J, Kokkalis A, Dimitrova V et al. Single-cell profiling reveals metabolic reprogramming as a resistance mechanism in BRAF-mutated multiple myeloma. Clin Cancer Res. 2021. https://doi.org/10.1158/1078-0432.CCR-21-2040.

  44. Vrabel D, Sedlarikova L, Besse L, Rihova L, Bezdekova R, Almasi M, et al. Dynamics of tumor-specific cfDNA in response to therapy in multiple myeloma patients. Eur J Haematol. 2020;104:190–7.

    Article  CAS  PubMed  Google Scholar 

  45. Engelhardt M, Ihorst G, Duque-Afonso J, Wedding U, Spät-Schwalbe E, Goede V, et al. Structured assessment of frailty in multiple myeloma as a paradigm of individualized treatment algorithms in cancer patients at advanced age. Haematologica. 2020;105:1183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alidousty C, Brandes D, Heydt C, Wagener S, Wittersheim M, Schäfer SC, et al. Comparison of blood collection tubes from three different manufacturers for the collection of cell-free DNA for liquid biopsy mutation testing. J Mol Diagn. 2017;19:801–4.

    Article  CAS  PubMed  Google Scholar 

  47. Mithraprabhu S, Spencer A. Analysis of circulating tumor DNA. Methods Mol Biol. 2018;1792:129–45.

    Article  CAS  PubMed  Google Scholar 

  48. Bianchi G, Kyle RA, Larson DR, Witzig TE, Kumar S, Dispenzieri A, et al. High levels of peripheral blood circulating plasma cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia. 2013;27:680–5.

    Article  CAS  PubMed  Google Scholar 

  49. Lohr JG, Kim S, Gould J, Knoechel B, Drier Y, Cotton MJ, et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci Transl Med. 2016;8:363ra147.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mishima Y, Paiva B, Shi J, Park J, Manier S, Takagi S, et al. The mutational landscape of circulating tumor cells in multiple myeloma. Cell Rep. 2017;19:218–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kumar S, Rajkumar SV, Kyle RA, Lacy MQ, Dispenzieri A, Fonseca R, et al. Prognostic value of circulating plasma cells in monoclonal gammopathy of undetermined significance. J Clin Oncol. 2005;23:5668–74.

    Article  PubMed  Google Scholar 

  52. Gonsalves WI, Rajkumar SV, Dispenzieri A, Dingli D, Timm MM, Morice WG, et al. Quantification of circulating clonal plasma cells via multiparametric flow cytometry identifies patients with smoldering multiple myeloma at high risk of progression. Leukemia. 2017;31:130–5.

    Article  CAS  PubMed  Google Scholar 

  53. Gonsalves WI, Jevremovic D, Nandakumar B, Dispenzieri A, Buadi FK, Dingli D, et al. Enhancing the R-ISS classification of newly diagnosed multiple myeloma by quantifying circulating clonal plasma cells. Am J Hematol. 2020;95:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Paiva B, Paino T, Sayagues J-M, Garayoa M, San-Segundo L, Martín M, et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood. 2013;122:3591–8.

    Article  CAS  PubMed  Google Scholar 

  55. Sanoja-Flores L, Flores-Montero J, Puig N, Contreras-Sanfeliciano T, Pontes R, Corral-Mateos A, et al. Blood monitoring of circulating tumor plasma cells by next generation flow in multiple myeloma after therapy. Blood. 2019;134:2218–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Garcés J-J, Bretones G, Burgos L, Valdes-Mas R, Puig N, Cedena M-T, et al. Circulating tumor cells for comprehensive and multiregional non-invasive genetic characterization of multiple myeloma. Leukemia. 2020;34:3007–18.

    Article  PubMed  Google Scholar 

  57. Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, et al. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99:511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang W, Corrigan-Cummins M, Barber EA, Saleh LM, Zingone A, Ghafoor A, et al. Aberrant levels of miRNAs in bone marrow microenvironment and peripheral blood of myeloma patients and disease progression. J Mol Diagn. 2015;17:669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Navarro A, Díaz T, Tovar N, Pedrosa F, Tejero R, Cibeira MT, et al. A serum microRNA signature associated with complete remission and progression after autologous stem-cell transplantation in patients with multiple myeloma. Oncotarget. 2015;6:1874–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lionetti M, Musto P, Di Martino MT, Fabris S, Agnelli L, Todoerti K, et al. Biological and clinical relevance of miRNA expression signatures in primary plasma cell leukemia. Clin Cancer Res. 2013;19:3130–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JMW is supported by a postdoctoral fellowship of Deutsche Forschungsgemeinschaft (German Research Foundation, 391926441) and the International Myeloma Society Young Investigator Award (IMW, Boston, 2019). JGL is supported by the NCI (K08CA191026), the V Foundation for Cancer Research, and the Anna Fuller Fund. BK is supported by the NCI (K08CA191091).

Author information

Authors and Affiliations

Authors

Contributions

JMW, TV, SP, BK, and JGL designed and performed experiments and analyzed the data. AJY, NSR, JGL, MM, LB, GB, SS, RF, BL, EC, ED, JPL, NCM, PGR, and KCA designed the study and provided clinical data analysis. JMW, TV, RPR, PA, CZZ, BK and JGL conceived and implemented computational methods for data analysis. JF, SP, MSN, AK, GG, and JK provided analytical support. JMW, AJY, TV, NSR, BK, and JGL wrote the paper. JGL, BK, and NSR designed the experimental strategy and supervised the analysis. All authors discussed the results and implications and reviewed the paper.

Corresponding author

Correspondence to Jens G. Lohr.

Ethics declarations

Competing interests

No disclosures are related to this publication. JMW: Advisory boards of Janssen and Sanofi. AJY: Advisory boards of Adaptive, Amgen, Bristol-Myers Squibb, GSK, Janssen, Karyopharm, Oncopeptides, Regeneron, Sanofi and Takeda. Clinical trial support from Adaptive, Amgen, BMS, Bristol-Myers Squibb, Janssen and Takeda. BL: Research funding from Amgen and Cellectar. Advisory boards of Bristol-Myers Squibb, Janssen, and GlaxoSmithKline. C-ZZ: Co-founder, advisor, and equity holder of Pillar BioSciences. PGR: Advisory boards of AbbVie, AstraZeneca, GSK, Bristol-Myers Squibb, Oncopeptides, Celgene, Takeda, and Karyopharm. Advisory boards of Oncopeptides, Janssen, Sanofi, and Secura Bio. KCA: Advisory boards of Janssen, Amgen, Pfizer, AstraZeneca, Precision Biosciences, Bristol-Myers Squibb, Mana, Starton, Window during the conduct of the study; other support from C4 Therapeutics, Oncopep, Raqia; and other support from NextRNA outside the submitted work. NSR: Advisory boards of Amgen, Bristol-Myers Squibb, Janssen, Sanofi, Takeda, AstraZeneca, GSK, Pfizer, Caribou, Immuneel and C4 Therapeutics. Research funding from BluebirdBio. JGL: Consultant for T2 Biosystems outside the submitted work. Research funding from Bristol-Myers Squibb, Celgene. All other authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldschmidt, J.M., Yee, A.J., Vijaykumar, T. et al. Cell-free DNA for the detection of emerging treatment failure in relapsed/ refractory multiple myeloma. Leukemia 36, 1078–1087 (2022). https://doi.org/10.1038/s41375-021-01492-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01492-y

This article is cited by

Search

Quick links