Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMMUNOTHERAPY

CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia

Abstract

Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent antitumor effects in B-cell malignancies including acute lymphoblastic leukemia (ALL), but antigen loss remains the major cause of treatment failure. To mitigate antigen escape and potentially improve the durability of remission, we developed a dual-targeting approach using an optimized, bispecific CAR construct that targets both CD19 and BAFF-R. CD19/BAFF-R dual CAR T cells exhibited antigen-specific cytokine release, degranulation, and cytotoxicity against both CD19−/− and BAFF-R−/− variant human ALL cells in vitro. Immunodeficient mice engrafted with mixed CD19−/− and BAFF-R−/− variant ALL cells and treated with a single dose of CD19/BAFF-R dual CAR T cells experienced complete eradication of both CD19−/− and BAFF-R−/− ALL variants, whereas mice treated with monospecific CD19 or BAFF-R CAR T cells succumbed to outgrowths of CD19−/BAFF-R+ or CD19+/BAFF-R− tumors, respectively. Further, CD19/BAFF-R dual CAR T cells showed prolonged in vivo persistence, raising the possibility that these cells may have the potential to promote durable remissions. Together, our data support clinical translation of BAFF-R/CD19 dual CAR T cells to treat ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of prototype BAFF-R/CD19 dual-targeting CAR T cells.
Fig. 2: Functional evaluation of CD19/BAFF-R dual-targeting CAR T cells.
Fig. 3: Antitumor activity of CD19-BAFF-R(l) dual-targeting CAR T cells manufactured in a clinically relevant platform.
Fig. 4: Comparison of CD19-BAFF-R(l) dual-targeting CAR with CD19 and BAFF-R single CAR in a mixed tumor model.
Fig. 5: Analysis of residual tumor and CAR T cells in mouse peripheral blood.
Fig. 6: Dual CAR T cells exhibited efficient cytotoxicity against primary ALL cells.

Similar content being viewed by others

References

  1. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6:224ra25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–28.

    Article  CAS  PubMed  Google Scholar 

  4. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123:2625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  6. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33:540–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kochenderfer JN, Somerville R, Lu L, Iwamoto A, Yang JC, Klebanoff C, et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma. Blood. 2014;124:550.

    Article  Google Scholar 

  8. Ruella M, Maus MV. Catch me if you can: leukemia escape after CD19-directed T cell immunotherapies. Comput Struct Biotechnol J. 2016;14:357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sotillo E, Barrett DM, Black KL, Bagashev A, Oldridge D, Wu G, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov. 2015;5:1282–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Orlando EJ, Han X, Tribouley C, Wood PA, Leary RJ, Riester M, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med. 2018;24:1504–6.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Aldoss I, Qu C, Crawford JC, Gu Z, Allen EK, et al. Tumor-intrinsic and -extrinsic determinants of response to blinatumomab in adults with B-ALL. Blood. 2021;137:471–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood. 2016;127:2406–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagel I, Bartels M, Duell J, Oberg HH, Ussat S, Bruckmueller H, et al. Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood. 2017;130:2027–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qin H, Ramakrishna S, Nguyen S, Fountaine TJ, Ponduri A, Stetler-Stevenson M, et al. Preclinical development of bivalent chimeric antigen receptors targeting both CD19 and CD22. Mol Ther Oncolytics. 2018;11:127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah NN, Johnson BD, Schneider D, Zhu F, Szabo A, Keever-Taylor CA, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nat Med. 2020;26:1569–75.

    Article  CAS  PubMed  Google Scholar 

  16. Tong C, Zhang Y, Liu Y, Ji X, Zhang W, Guo Y, et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood. 2020;136:1632–44.

    PubMed  PubMed Central  Google Scholar 

  17. Kang L, Zhang J, Li M, Xu N, Qi W, Tan J, et al. Characterization of novel dual tandem CD19/BCMA chimeric antigen receptor T cells to potentially treat multiple myeloma. Biomark Res. 2020;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zah E, Nam E, Bhuvan V, Tran U, Ji BY, Gosliner SB, et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat Commun. 2020;11:2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Larrea CF, Staehr M, Lopez AV, Ng KY, Chen Y, Godfrey WD, et al. Defining an optimal dual-targeted CAR T-cell therapy approach simultaneously targeting BCMA and GPRC5D to prevent BCMA escape-driven relapse in multiple myeloma. Blood Cancer Disco. 2020;1:146–54.

    Article  Google Scholar 

  20. Qin H, Wei G, Sakamaki I, Dong Z, Cheng WA, Smith DL, et al. Novel BAFF-receptor antibody to natively folded recombinant protein eliminates drug-resistant human b-cell malignancies in vivo. Clin Cancer Res. 2018;24:1114–23.

    Article  CAS  PubMed  Google Scholar 

  21. Rodig SJ, Shahsafaei A, Li B, Mackay CR, Dorfman DM. BAFF-R, the major B cell-activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Hum Pathol. 2005;36:1113–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hildebrand JM, Luo Z, Manske MK, Price-Troska T, Ziesmer SC, Lin W, et al. A BAFF-R mutation associated with non-Hodgkin lymphoma alters TRAF recruitment and reveals new insights into BAFF-R signaling. J Exp Med. 2010;207:2569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thompson JS, Bixler SA, Qian F, Vora K, Scott ML, Cachero TG, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–11.

    Article  CAS  PubMed  Google Scholar 

  24. Parameswaran R, Lim M, Fei F, Abdel-Azim H, Arutyunyan A, Schiffer I, et al. Effector-mediated eradication of precursor B acute lymphoblastic leukemia with a novel Fc-engineered monoclonal antibody targeting the BAFF-R. Mol Cancer Ther. 2014;13:1567–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Qin H, Dong Z, Wang X, Cheng WA, Wen F, Xue W, et al. CAR T cells targeting BAFF-R can overcome CD19 antigen loss in B cell malignancies. Sci Transl Med. 2019;11:eaaw9414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol. 2018;9, 2285.

  27. Maia S, Pelletier M, Ding J, Hsu YM, Sallan SE, Rao SP, et al. Aberrant expression of functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival. PLoS One. 2011;6:e20787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Res. 2006;66:10995–1004.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Chang WC, Wong CW, Colcher D, Sherman M, Ostberg JR, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118:1255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dong Z, Cheng WA, Smith DL, Huang B, Zhang T, Chang W-C, et al. Antitumor efficacy of BAFF-R targeting CAR T cells manufactured under clinic-ready conditions. Cancer Immunol Immunother. 2020;69:2139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jonnalagadda M, Mardiros A, Urak R, Wang X, Hoffman LJ, Bernanke A, et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol Ther. 2015;23:757–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018;24:20–8.

    Article  CAS  PubMed  Google Scholar 

  33. Wang X, Huynh C, Urak R, Weng L, Walter M, Lim L, et al. The cerebroventricular environment modifies CAR T cells for potent activity against both central nervous system and systemic lymphoma. Cancer Immunol Res. 2021;9:75–88.

    Article  CAS  PubMed  Google Scholar 

  34. Stastny MJ, Brown CE, Ruel C, Jensen MC. Medulloblastomas expressing IL13Ralpha2 are targets for IL13-zetakine+ cytolytic T cells. J Pediatr Hematol Oncol. 2007;29:669–77.

    Article  CAS  PubMed  Google Scholar 

  35. Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, et al. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood. 2016;127:2980–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Topp MS, Kufer P, Gökbuget N, Goebeler M, Klinger M, Neumann S, et al. Targeted therapy with the T-cell–engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29:2493–8.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang K, Geddie ML, Kohli N, Kornaga T, Kirpotin DB, Jiao Y, et al. Comprehensive optimization of a single-chain variable domain antibody fragment as a targeting ligand for a cytotoxic nanoparticle. MAbs 2015;7:42–52.

    Article  PubMed  Google Scholar 

  39. Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T cells expressing CD19/CD20 bispecific chimeric antigen receptors prevent antigen escape by malignant B cells. Cancer Immunol Res. 2016;4:498–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shah NN, Maatman T, Hari P, Johnson B. Multi targeted CAR-T cell therapies for B-Cell malignancies. Front Oncol. 2019;9:146.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Walker AJ, Majzner RG, Zhang L, Wanhainen K, Long AH, Nguyen SM, et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol Ther. 2017;25:2189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watanabe K, Terakura S, Martens AC, van Meerten T, Uchiyama S, Imai M, et al. Target antigen density governs the efficacy of anti–CD20-CD28-CD3 ζ chimeric antigen receptor–modified effector CD8+ T cells. J Immunol. 2015;194:911–20.

    Article  CAS  PubMed  Google Scholar 

  43. Caruso HG, Hurton LV, Najjar A, Rushworth D, Ang S, Olivares S, et al. Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity. Cancer Res. 2015;75:3505–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turatti F, Figini M, Balladore E, Alberti P, Casalini P, Marks JD, et al. Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction. J Immunother. 2007;30:684–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Small Animal Imaging Core is supported by the National Cancer Institute of the National Institutes of Health (P30CA033572); Toni Stephenson Lymphoma Center (PI: L.W.K.); Leukemia and Lymphoma Society Mantle cell lymphoma Research Initiative (SCOR 7000-18; PI: L.W.K.; Project Leaders: S.J.F.; X.W.; E.L.B.); Department of Defense (CA170783, PI: L.W.K.). Lymphoma SPORE (P50 CA107399-11, PI: S.J.F; L.W.K; Project leaders: X.W.; R.N.).

Author information

Authors and Affiliations

Authors

Contributions

L.W.K., S.J.F., X.W., I.A., and H.Q. designed and directed the study, analyzed and organized the data, and wrote the manuscript. W.C.C., V.V., D.A. designed the vectors and produced lentivirus. D.A., Z.D., S.C., T.Z., Z.W., S.S., B.K., and A.A. performed experimental work in mice and immune assays. M.C.C. and W.A.C. reviewed and edited the manuscript. All authors read and approved the final version.

Corresponding authors

Correspondence to Stephen J. Forman or Larry W. Kwak.

Ethics declarations

Competing interests

Sources of support include the National Cancer Institute of the National Institutes of Health (P30CA033572) supporting the Small Animal Imaging Core, National Cancer Institute Lymphoma SPORE (PI: L.W.K.), Leukemia and Lymphoma Society Mantle cell lymphoma Research Initiative (SCOR 7000-18; PI: L.W.K.; Project Leaders: S.J.F.; X.W.), Department of Defense (CA170783, PI: L.W.K.). X.W. is a paid consultant for Pepromene Bio, Inc.; L.W.K. and H.Q. are paid consultants and have equity in Pepromene Bio, Inc. The other authors report no disclosures.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Dong, Z., Awuah, D. et al. CD19/BAFF-R dual-targeted CAR T cells for the treatment of mixed antigen-negative variants of acute lymphoblastic leukemia. Leukemia 36, 1015–1024 (2022). https://doi.org/10.1038/s41375-021-01477-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01477-x

This article is cited by

Search

Quick links