Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ACUTE MYELOID LEUKEMIA

Targeting leukemia-specific dependence on the de novo purine synthesis pathway

Abstract

Acute myeloid leukemia (AML) is a devastating disease, and clinical outcomes are still far from satisfactory. Here, to identify novel targets for AML therapy, we performed a genome-wide CRISPR/Cas9 screen using AML cell lines, followed by a second screen in vivo. We show that PAICS, an enzyme involved in de novo purine biosynthesis, is a potential target for AML therapy. AML cells expressing shRNA-PAICS exhibited a proliferative disadvantage, indicating a toxic effect of shRNA-PAICS. Treatment of human AML cells with a PAICS inhibitor suppressed their proliferation by inhibiting DNA synthesis and promoting apoptosis and had anti-leukemic effects in AML PDX models. Furthermore, CRISPR/Cas9 screens using AML cells in the presence of the inhibitor revealed genes mediating resistance or synthetic lethal to PAICS inhibition. Our findings identify PAICS as a novel therapeutic target for AML and further define components of de novo purine synthesis pathway and its downstream effectors essential for AML cell survival.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genome-wide CRISPR-Cas9 screens identify PAICS as an AML essential gene.
Fig. 2: PAICS knockdown slows AML cell proliferation.
Fig. 3: PAICS inhibitor suppresses AML cell proliferation.
Fig. 4: CRISPR screens in the presence of PAICS inhibitor identify genes whose loss interacts with drug.
Fig. 5: PAICS inhibitor treatment has anti-leukemia effects in AML PDX models.

References

  1. 1.

    Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl J Med. 2016;374:2209–21. https://doi.org/10.1056/NEJMoa1516192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. https://doi.org/10.1182/blood-2016-08-733196

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606. https://doi.org/10.1016/S0140-6736(18)31041-9

    Article  PubMed  Google Scholar 

  4. 4.

    Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–78. https://doi.org/10.1016/j.cell.2012.06.023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. https://doi.org/10.1038/nature12912

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153:17–37. https://doi.org/10.1016/j.cell.2013.03.002

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Boehm JS, Hahn WC. Towards systematic functional characterization of cancer genomes. Nat Rev Genet. 2011;12:487–98. https://doi.org/10.1038/nrg3013

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31:230–2. https://doi.org/10.1038/nbt.2507

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23. https://doi.org/10.1126/science.1231143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21. https://doi.org/10.1126/science.1225829

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6. https://doi.org/10.1126/science.1232033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera MeC, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32:267–73. https://doi.org/10.1038/nbt.2800

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–7. https://doi.org/10.1126/science.1247005

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 2015;33:661–7. https://doi.org/10.1038/nbt.3235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wang T, Wei JJ, Sabatini DM, Lander ES. Genetic screens in human cells using the CRISPR-Cas9 system. Science. 2014;343:80–4. https://doi.org/10.1126/science.1246981

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, et al. Genome-wide CRISPR-Cas9 Screen Identifies Leukemia-Specific Dependence on a Pre-mRNA Metabolic Pathway Regulated by DCPS. Cancer Cell. 2018;33:386–400.e5. https://doi.org/10.1016/j.ccell.2018.01.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hinze L, Pfirrmann M, Karim S, Degar J, McGuckin C, Vinjamur D, et al. Synthetic lethality of wnt pathway activation and asparaginase in drug-resistant acute leukemias. Cancer Cell. 2019;35:664–76.e7. https://doi.org/10.1016/j.ccell.2019.03.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Han K, Jeng EE, Hess GT, Morgens DW, Li A, Bassik MC. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 2017;35:463–74. https://doi.org/10.1038/nbt.3834

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation. N. Engl J Med. 2017;377:454–64. https://doi.org/10.1056/NEJMoa1614359

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for relapsed or refractory. N. Engl J Med. 2019;381:1728–40. https://doi.org/10.1056/NEJMoa1902688

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant. Blood. 2017;130:722–31. https://doi.org/10.1182/blood-2017-04-779405

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    DiNardo CD, Stein EM, de Botton S, Roboz GJ, Altman JK, Mims AS, et al. Durable remissions with Ivosidenib in IDH1-mutated relapsed or refractory AML. N. Engl J Med. 2018;378:2386–98.

    CAS  Article  Google Scholar 

  23. 23.

    DiNardo CD, Pratz K, Pullarkat V, Jonas BA, Arellano M, Becker PS, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019;133:7–17.

    CAS  Article  Google Scholar 

  24. 24.

    Yamauchi T, Takenaka K, Urata S, Shima T, Kikushige Y, Tokuyama T, et al. Polymorphic Sirpa is the genetic determinant for NOD-based mouse lines to achieve efficient human cell engraftment. Blood. 2013;121:1316–25.

    CAS  Article  Google Scholar 

  25. 25.

    Canver MC, Lessard S, Pinello L, Wu Y, Ilboudo Y, Stern EN, et al. Variant-aware saturating mutagenesis using multiple Cas9 nucleases identifies regulatory elements at trait-associated loci. Nat Genet. 2017;49:625–34.

    CAS  Article  Google Scholar 

  26. 26.

    Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015;527:192–7.

    CAS  Article  Google Scholar 

  27. 27.

    Hasunuma T, Kikuyama F, Matsuda M, Aikawa S, Izumi Y, Kondo A. Dynamic metabolic profiling of cyanobacterial glycogen biosynthesis under conditions of nitrate depletion. J Exp Bot. 2013;64:2943–54.

    CAS  Article  Google Scholar 

  28. 28.

    Fushimi T, Izumi Y, Takahashi M, Hata K, Murano Y, Bamba T. Dynamic metabolome analysis reveals the metabolic fate of medium-chain fatty acids in AML12 cells. J Agric Food Chem. 2020;68:11997–2010.

    CAS  Article  Google Scholar 

  29. 29.

    Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article  Google Scholar 

  30. 30.

    Xu H, Gopalsamy A, Hett EC, Salter S, Aulabaugh A, Kyne RE, et al. Cellular thermal shift and clickable chemical probe assays for the determination of drug-target engagement in live cells. Org Biomol Chem. 2016;14:6179–83.

    CAS  Article  Google Scholar 

  31. 31.

    Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 2014;15:554.

    Article  Google Scholar 

  32. 32.

    Meyers RM, Bryan JG, McFarland JM, Weir BA, Sizemore AE, Xu H, et al. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nat Genet. 2017;49:1779–84.

    CAS  Article  Google Scholar 

  33. 33.

    Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

    CAS  Article  Google Scholar 

  34. 34.

    Hoxhaj G, Hughes-Hallett J, Timson RC, Ilagan E, Yuan M, Asara JM, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels. Cell Rep. 2017;21:1331–46.

    CAS  Article  Google Scholar 

  35. 35.

    Agarwal S, Chakravarthi BVSK, Behring M, Kim HG, Chandrashekar DS, Gupta N, et al. PAICS, a purine nucleotide metabolic enzyme, is involved in tumor growth and the metastasis of colorectal cancer. Cancers. 2020;12. https://doi.org/10.3390/cancers12040772.

  36. 36.

    Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M, Bertolet L, et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 2019;11:52.

    Article  Google Scholar 

  37. 37.

    Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human pathology. Annu Rev Pathol. 2015;10:173–94.

    CAS  Article  Google Scholar 

  38. 38.

    Li SX, Tong YP, Xie XC, Wang QH, Zhou HN, Han Y, et al. Octameric structure of the human bifunctional enzyme PAICS in purine biosynthesis. J Mol Biol. 2007;366:1603–14.

    CAS  Article  Google Scholar 

  39. 39.

    HARTMAN SC, BUCHANAN JM. Biosynthesis of the purines. XXVI. The identification of the formyl donors of the transformylation reactions. J Biol Chem. 1959;234:1812–6.

    CAS  Article  Google Scholar 

  40. 40.

    LUKENS LN, BUCHANAN JM. Biosynthesis of the purines. XXIV. The enzymatic synthesis of 5-amino-1-ribosyl-4-imidazolecarboxylic acid 5’-phosphate from 5-amino-1-ribosylimidazole 5’-phosphate and carbon dioxide. J Biol Chem. 1959;234:1799–805.

    CAS  Article  Google Scholar 

  41. 41.

    Chabner BA, Roberts TG. Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.

    CAS  Article  Google Scholar 

  42. 42.

    Jackson RC, Harkrader RJ. Synergistic and antagonistic interactions of methotrexate and 1-beta-D-arabinofuranosylcytosine in hepatoma cells. The modulating effect of purines. Biochem Pharmacol. 1981;30:223–9.

    CAS  Article  Google Scholar 

  43. 43.

    Batova A, Diccianni MB, Omura-Minamisawa M, Yu J, Carrera CJ, Bridgeman LJ, et al. Use of alanosine as a methylthioadenosine phosphorylase-selective therapy for T-cell acute lymphoblastic leukemia in vitro. Cancer Res. 1999;59:1492–7.

    CAS  PubMed  Google Scholar 

  44. 44.

    Duval N, Luhrs K, Wilkinson TG, Baresova V, Skopova V, Kmoch S, et al. Genetic and metabolomic analysis of AdeD and AdeI mutants of de novo purine biosynthesis: cellular models of de novo purine biosynthesis deficiency disorders. Mol Genet Metab. 2013;108:178–89.

    CAS  Article  Google Scholar 

  45. 45.

    Zhou S, Yan Y, Chen X, Wang X, Zeng S, Qian L, et al. Roles of highly expressed PAICS in lung adenocarcinoma. Gene. 2019;692:1–8.

    CAS  Article  Google Scholar 

  46. 46.

    Chakravarthi BVSK, Rodriguez Pena MDC, Agarwal S, Chandrashekar DS, Hodigere Balasubramanya SA, Jabboure FJ, et al. A role for de novo purine metabolic enzyme PAICS in bladder cancer progression. Neoplasia. 2018;20:894–904. https://doi.org/10.1016/j.neo.2018.07.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Meng M, Chen Y, Jia J, Li L, Yang S. Knockdown of PAICS inhibits malignant proliferation of human breast cancer cell lines. Biol Res. 2018;51:24.

    Article  Google Scholar 

  48. 48.

    Chakravarthi BVSK, Goswami MT, Pathi SS, Dodson M, Chandrashekar DS, Agarwal S, et al. Expression and role of PAICS, a de novo purine biosynthetic gene in prostate cancer. Prostate. 2018;78:693–4. https://doi.org/10.1002/pros.23533

    Article  PubMed  Google Scholar 

  49. 49.

    HENDERSON JF, KHOO KY. On the mechanism of feedback inhibition of purine biosynthesis de novo in ehrlich ascites tumor cells in vitro. J Biol Chem. 1965;240:3104–9.

    CAS  Article  Google Scholar 

  50. 50.

    HARTMAN SC, BUCHANAN JM. The biosynthesis of the purines. Ergeb Physiol. 1959;50:75–121.

    CAS  Article  Google Scholar 

  51. 51.

    Sant ME, Lyons SD, Phillips L, Christopherson RI. Antifolates induce inhibition of amido phosphoribosyltransferase in leukemia cells. J Biol Chem. 1992;267:11038–45.

    CAS  Article  Google Scholar 

  52. 52.

    Pelet A, Skopova V, Steuerwald U, Baresova V, Zarhrate M, Plaza JM, et al. PAICS deficiency, a new defect of de novo purine synthesis resulting in multiple congenital anomalies and fatal outcome. Hum Mol Genet. 2019;28:3805–14.

    CAS  Article  Google Scholar 

  53. 53.

    Schuhmacher M, Kohlhuber F, Hölzel M, Kaiser C, Burtscher H, Jarsch M, et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 2001;29:397–406.

    CAS  Article  Google Scholar 

  54. 54.

    Kim J, Lee JH, Iyer VR. Global identification of Myc target genes reveals its direct role in mitochondrial biogenesis and its E-box usage in vivo. PLoS One. 2008;3:e1798.

    Article  Google Scholar 

  55. 55.

    Barfeld SJ, Fazli L, Persson M, Marjavaara L, Urbanucci A, Kaukoniemi KM, et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget. 2015;6:12587–602.

    Article  Google Scholar 

  56. 56.

    Furukawa J, Inoue K, Maeda J, Yasujima T, Ohta K, Kanai Y, et al. Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Sci Rep. 2015;5:15057.

    CAS  Article  Google Scholar 

  57. 57.

    Takenaka R, Yasujima T, Furukawa J, Hishikawa Y, Yamashiro T, Ohta K, et al. Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2 Cells. J Pharm Sci. 2020;109:2622–2628.

    CAS  Article  Google Scholar 

  58. 58.

    Townsend EC, Murakami MA, Christodoulou A, Christie AL, Köster J, DeSouza TA, et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell. 2016;30:183.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Medicine and Biosystemic Science at Kyushu University for assistance, advice, and helpful discussion and Simon Osborne, Craig Southern, Debra Taylor, and Kevin Buchan from LifeArc for providing MRT00252040, and Elise Lamar for critical reading of the manuscript. This work is supported in part by a Grant-in-Aid for Young Scientists (19K17859), Research Grant of KANAE Foundation, MSD Life Science Foundation, The Yasuda Medical Foundation, Mochida Memorial Foundation for medical and pharmaceutical research, The Shinnihon Foundation of Advanced Medical Treatment Research, Takeda Science Foundation (to TY), a Grant-in-Aid for Scientific Research (S)(16H06391)(to KA) and an American Society of Hematology Bridge Grant, a Grant-in-Aid for Scientific Research (A) (17H01567), Grant-in-Aid for Scientific Research (S) (20H05699), and AMED under grant number 18063889 (to TM).

Author information

Affiliations

Authors

Contributions

TY, YS, FN, and TM designed CRISPR-Cas9 screen experiments. TY, YS, JN, and TM reviewed CRISPR screen data. TY, KM TS, and KS executed CRISPR-Cas9 experiments, cell biology experiments, and in vivo mouse studies (supervised by KA and TM). MT, YI, and TB performed metabolomic assays. YS and JN analyzed CRISPR saturation mutagenesis data (supervised by LP and DB). TY and TM wrote the manuscript with help from all authors.

Corresponding author

Correspondence to Takahiro Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamauchi, T., Miyawaki, K., Semba, Y. et al. Targeting leukemia-specific dependence on the de novo purine synthesis pathway. Leukemia (2021). https://doi.org/10.1038/s41375-021-01369-0

Download citation

Search

Quick links