Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Increasing recognition and emerging therapies argue for dedicated clinical trials in chronic myelomonocytic leukemia

Abstract

Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic stem cell disorder with overlapping features of myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPN). Median overall survival of this aggressive myeloid malignancy is only 2–3 years, with a 15–30% risk of acute leukemic transformation. The paucity of clinical trials specifically designed for CMML has made therapeutic management of CMML patients challenging. As a result, treatment paradigms for CMML patients are largely borrowed from MDS and MPN. The standard of care still relies on hydroxyurea, hypomethylating agents (HMA), and allogeneic stem cell transplantation, this latter option remaining the only potentially curative therapy. To date, approved drugs for CMML treatment are HMA, including azacitidine, decitabine, and more recently the oral combination of decitabine and cedazuridine. However, HMA treatment does not meaningfully alter the natural course of this disease. New treatment approaches for improving CMML-associated cytopenias or targeting the CMML malignant clone are emerging. More than 25 therapeutic agents are currently being evaluated in phase 1 or phase 2 clinical trials for CMML and other myeloid malignancies, often in combination with a HMA backbone. Several novel agents, such as sotatercept, ruxolitinib, lenzilumab, and tagraxofusp have shown promising clinical efficacy in CMML. Current evidence supports the idea that effective treatment in CMML will likely require combination therapy targeting multiple pathways, which emphasizes the need for additional new therapeutic options. This review focuses on recent therapeutic advances and innovative treatment strategies in CMML, including global and molecularly targeted approaches. We also discuss what may help to make progress in the design of rationally derived and disease-modifying therapies for CMML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Treatment goals for CMML according to the myelodysplastic or myeloproliferative disease subtype.
Fig. 2: Therapeutic strategies for CMML patients.
Fig. 3: Targeting cell-autonomous mechanisms in CMML.
Fig. 4: Targeting non-cell autonomous mechanisms in CMML.

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  2. Srour SA, Devesa SS, Morton LM, Check DP, Curtis RE, Linet MS, et al. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br J Haematol. 2016;174:382–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phekoo KJ, Richards MA, Møller H, Schey SA. The incidence and outcome of myeloid malignancies in 2,112 adult patients in southeast England. Haematologica. 2006;91:1400–4.

    PubMed  Google Scholar 

  4. Elmariah H, DeZern AE. Chronic myelomonocytic leukemia: 2018 update to prognosis and treatment. Curr Hematol Malig Rep. 2019;14:154–63.

    Article  PubMed  Google Scholar 

  5. Solary E, Itzykson R. How I treat chronic myelomonocytic leukemia. Blood. 2017;130:126–36.

    Article  CAS  PubMed  Google Scholar 

  6. Patnaik MM, Tefferi A. Chronic myelomonocytic leukemia: 2020 update on diagnosis, risk stratification and management. Am J Hematol. 2020;95:97–115.

    Article  CAS  PubMed  Google Scholar 

  7. Dinmohamed AG, van Norden Y, Visser O, Posthuma EFM, Huijgens PC, Sonneveld P, et al. The use of medical claims to assess incidence, diagnostic procedures and initial treatment of myelodysplastic syndromes and chronic myelomonocytic leukemia in the Netherlands. Leuk Res. 2015;39:177–82.

    Article  PubMed  Google Scholar 

  8. Padron E, Garcia-Manero G, Patnaik MM, Itzykson R, Lasho T, Nazha A, et al. An international data set for CMML validates prognostic scoring systems and demonstrates a need for novel prognostication strategies. Blood Cancer J. 2015;5:e333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33:451–8.

    Article  CAS  PubMed  Google Scholar 

  10. Patnaik MM, Itzykson R, Lasho TL, Kosmider O, Finke CM, Hanson CA, et al. ASXL1 and SETBP1 mutations and their prognostic contribution in chronic myelomonocytic leukemia: a two-center study of 466 patients. Leukemia. 2014;28:2206–12.

    Article  CAS  PubMed  Google Scholar 

  11. Patnaik MM, Padron E, LaBorde RR, Lasho TL, Finke CM, Hanson CA, et al. Mayo prognostic model for WHO-defined chronic myelomonocytic leukemia: ASXL1 and spliceosome component mutations and outcomes. Leukemia. 2013;27:1504–10.

    Article  CAS  PubMed  Google Scholar 

  12. Onida F, Kantarjian HM, Smith TL, Ball G, Keating MJ, Estey EH, et al. Prognostic factors and scoring systems in chronic myelomonocytic leukemia: a retrospective analysis of 213 patients. Blood. 2002;99:840–9.

    Article  CAS  PubMed  Google Scholar 

  13. Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, et al. Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 2013;31:2428–36.

    Article  CAS  PubMed  Google Scholar 

  14. Such E, Germing U, Malcovati L, Cervera J, Kuendgen A, Della Porta MG, et al. Development and validation of a prognostic scoring system for patients with chronic myelomonocytic leukemia. Blood. 2013;121:3005–15.

    Article  CAS  PubMed  Google Scholar 

  15. Elena C, Gallì A, Such E, Meggendorfer M, Germing U, Rizzo E, et al. Integrating clinical features and genetic lesions in the risk assessment of patients with chronic myelomonocytic leukemia. Blood. 2016;128:1408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan O, Renneville A, Padron E. Chronic myelomonocytic leukemia diagnosis and management. Leukemia. 2021. https://doi.org/10.1038/s41375-021-01207-3.

  17. Itzykson R, Fenaux P, Bowen D, Cross NCP, Cortes J, De Witte T, et al. Diagnosis and Treatment of chronic myelomonocytic leukemias in adults: recommendations from the European Hematology Association and the European LeukemiaNet. HemaSphere. 2018;2:e150.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hunter AM, Zhang L, Padron E. Current management and recent advances in the treatment of chronic myelomonocytic. Leuk Curr Treat Options Oncol. 2018;19:67.

    Article  Google Scholar 

  19. Itzykson R, Kosmider O, Renneville A, Morabito M, Preudhomme C, Berthon C, et al. Clonal architecture of chronic myelomonocytic leukemias. Blood. 2013;121:2186–98.

    Article  CAS  PubMed  Google Scholar 

  20. Silverman LR, Demakos EP, Peterson BL, Kornblith AB, Holland JC, Odchimar-Reissig R, et al. Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol. J Am Soc. Clin Oncol. 2002;20:2429–40.

    Article  CAS  Google Scholar 

  21. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braun T, Itzykson R, Renneville A, de Renzis B, Dreyfus F, Laribi K, et al. Molecular predictors of response to decitabine in advanced chronic myelomonocytic leukemia: a phase 2 trial. Blood. 2011;118:3824–31.

    Article  CAS  PubMed  Google Scholar 

  23. Adès L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R, et al. Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res. 2013;37:609–13.

    Article  PubMed  CAS  Google Scholar 

  24. Santini V, Allione B, Zini G, Gioia D, Lunghi M, Poloni A, et al. A phase II, multicentre trial of decitabine in higher-risk chronic myelomonocytic leukemia. Leukemia. 2018;32:413–8.

    Article  CAS  PubMed  Google Scholar 

  25. Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M, et al. Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun. 2016;7:10767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coston T, Pophali P, Vallapureddy R, Lasho TL, Finke CM, Ketterling RP, et al. Suboptimal response rates to hypomethylating agent therapy in chronic myelomonocytic leukemia; a single institutional study of 121 patients. Am J Hematol. 2019;94:767–79.

    CAS  PubMed  Google Scholar 

  27. Wattel E, Guerci A, Hecquet B, Economopoulos T, Copplestone A, Mahé B, et al. A randomized trial of hydroxyurea versus VP16 in adult chronic myelomonocytic leukemia. Groupe Français des Myélodysplasies and European CMML Group. Blood. 1996;88:2480–7.

    Article  CAS  PubMed  Google Scholar 

  28. Itzykson R, Santini V, Chaffaut C, Adès L, Thepot S, Giagounidis A. Decitabine versus hydroxyurea for advanced proliferative CMML: Results of the EMSCO randomized phase 3 DACOTA trial. Blood. 2020;136:53–54.

    Article  Google Scholar 

  29. Pleyer L, Leisch M, Kourakli A, Padron E, Maciejewski JP, Xicoy Cirici B, et al. Outcomes of patients with chronic myelomonocytic leukaemia treated with non-curative therapies: a retrospective cohort study. Lancet Haematol. 2021;8:e135–e148.

    Article  PubMed  Google Scholar 

  30. Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, et al. FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2019;25:2685–90.

  31. Duchmann M, Yalniz FF, Sanna A, Sallman D, Coombs CC, Renneville A, et al. Prognostic role of gene mutations in chronic myelomonocytic leukemia patients treated with hypomethylating agents. EBioMedicine. 2018;31:174–81.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol J-B, et al. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Investig. 2015;125:1857–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garcia-Manero G, Roboz G, Walsh K, Kantarjian H, Ritchie E, Kropf P, et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes: phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019;6:e317–e327.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Savona MR, Odenike O, Amrein PC, Steensma DP, DeZern AE, Michaelis LC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes: a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019;6:e194–e203.

    Article  PubMed  Google Scholar 

  35. Garcia-Manero G, Griffiths EA, Steensma DP, Roboz GJ, Wells R, McCloskey J, et al. Oral cedazuridine/decitabine for MDS and CMML: a phase 2 pharmacokinetic/pharmacodynamic randomized crossover study. Blood. 2020;136:674–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stahl M, Zeidan AM. Hypomethylating agents in combination with histone deacetylase inhibitors in higher risk myelodysplastic syndromes: Is there a light at the end of the tunnel? Cancer. 2017;123:911–4.

    Article  PubMed  Google Scholar 

  37. List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl J Med. 2006;355:1456–65.

    Article  CAS  PubMed  Google Scholar 

  38. Sekeres MA, Othus M, List AF, Odenike O, Stone RM, Gore SD, et al. Randomized phase II study of azacitidine alone or in combination with lenalidomide or with vorinostat in higher-risk myelodysplastic syndromes and chronic myelomonocytic leukemia: North American Intergroup Study SWOG S1117. J Clin Oncol J Am Soc. Clin Oncol. 2017;35:2745–53.

    Article  CAS  Google Scholar 

  39. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N. Engl J Med. 2020;383:617–29.

    Article  CAS  PubMed  Google Scholar 

  40. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in patients with acute myeloid leukemia. Cancer Discov. 2020;10:536–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schiffer M, Zhao J, Johnson A, Lee J, Bewersdorf JP, Zeidan AM. The development and clinical use of oral hypomethylating agents in acute myeloid leukemia and myelodysplastic syndromes: dawn of the total oral therapy era. Expert Rev Anticancer Ther. 2021;1–13. https://doi.org/10.1080/14737140.2021.1918002.

  42. Fenaux P, Platzbecker U, Mufti GJ, Garcia-Manero G, Buckstein R, Santini V, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N. Engl J Med. 2020;382:140–51.

    Article  CAS  PubMed  Google Scholar 

  43. Komrokji R, Garcia-Manero G, Ades L, Prebet T, Steensma DP, Jurcic JG, et al. Sotatercept with long-term extension for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes: a phase 2, dose-ranging trial. Lancet Haematol. 2018;5:e63–e72.

    Article  PubMed  Google Scholar 

  44. Rabian F, Lambert J, Barbieri D, Gruson B, Thepot S, Braun T, et al. Eltrombopag in Chronic Myelomonocytic Leukemia (CMML) with severe thrombocytopenia: final results of a multicenter phase II study. Blood. 2020;136:15–16.

    Article  Google Scholar 

  45. Ball M, List AF, Padron E. When clinical heterogeneity exceeds genetic heterogeneity: thinking outside the genomic box in chronic myelomonocytic leukemia. Blood. 2016;128:2381–7.

    Article  CAS  PubMed  Google Scholar 

  46. Carr RM, Vorobyev D, Lasho T, Marks DL, Tolosa EJ, Vedder A, et al. RAS mutations drive proliferative chronic myelomonocytic leukemia via a KMT2A-PLK1 axis. Nat Commun. 2021;12:2901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Padron E, Painter JS, Kunigal S, Mailloux AW, McGraw K, McDaniel JM, et al. GM-CSF-dependent pSTAT5 sensitivity is a feature with therapeutic potential in chronic myelomonocytic leukemia. Blood. 2013;121:5068–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Patnaik MM, Sallman DA, Mangaonkar A, Heuer R, Hirvela J, Zblewski D, et al. Phase 1 study of lenzilumab, a recombinant anti-human GM-CSF antibody, for chronic myelomonocytic leukemia (CMML). Blood. 2020;136:909–13.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Crotti C, Biggioggero M, Becciolini A, Agape E, Favalli EG. Mavrilimumab: a unique insight and update on the current status in the treatment of rheumatoid arthritis. Expert Opin Investig Drugs. 2019;28:573–81.

    Article  CAS  PubMed  Google Scholar 

  50. Harrison C, Kiladjian J-J, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  51. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Padron E, Dezern A, Andrade-Campos M, Vaddi K, Scherle P, Zhang Q, et al. A Multi-Institution Phase I Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML). Clin Cancer Res. 2016;22:3746–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Assi R, Kantarjian HM, Garcia-Manero G, Cortes JE, Pemmaraju N, Wang X, et al. A phase II trial of ruxolitinib in combination with azacytidine in myelodysplastic syndrome/myeloproliferative neoplasms. Am J Hematol. 2018;93:277–85.

    Article  CAS  PubMed  Google Scholar 

  54. Yoshimi A, Balasis ME, Vedder A, Feldman K, Ma Y, Zhang H, et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML. Blood. 2017;130:397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Patnaik MM, Tefferi A. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia. Blood Cancer J. 2016;6:e393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Degirmenci U, Wang M, Hu J. Targeting aberrant RAS/RAF/MEK/ERK signaling for cancer therapy. Cells. 2020;9. https://doi.org/10.3390/cells9010198.

  57. Fenaux P, Raza A, Mufti GJ, Aul C, Germing U, Kantarjian H, et al. A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood. 2007;109:4158–63.

    Article  CAS  PubMed  Google Scholar 

  58. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative epigenetic remodeling by TET2 loss and NRAS mutation drives myeloid transformation and MEK inhibitor sensitivity. Cancer Cell. 2018;33:44–59. e8

    Article  CAS  PubMed  Google Scholar 

  59. Kloos A, Mintzas K, Winckler L, Gabdoulline R, Alwie Y, Jyotsana N, et al. Effective drug treatment identified by in vivo screening in a transplantable patient-derived xenograft model of chronic myelomonocytic leukemia. Leukemia. 2020;34:2951–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sevin M, Debeurme F, Laplane L, Badel S, Morabito M, Newman HL, et al. Cytokine-like protein 1-induced survival of monocytes suggests a combined strategy targeting MCL1 and MAPK in CMML. Blood. 2021. https://doi.org/10.1182/blood.2020008729.

  61. Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol. 2020;17:204–32.

    Article  PubMed  Google Scholar 

  62. Sekeres MA, Schuster MW, Joris M, Krauter J, Maertens JA, Gyan E, et al. A phase 1b study of Glasdegib in combination with azacitidine in patients with untreated higher-risk myelodysplastic syndromes, acute myeloid leukemia, and chronic myelomonocytic leukemia. Blood. 2019;134:177.

    Article  Google Scholar 

  63. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 2009;137:835–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Belizaire R, Koochaki SHJ, Udeshi ND, Vedder A, Sun L, Svinkina T, et al. CBL mutations drive PI3K/AKT signaling via increased interaction with LYN and PIK3R1. Blood. 2021. https://doi.org/10.1182/blood.2020006528.

  65. Villaume MT, Arrate MP, Ramsey HE, Sunthankar KI, Jenkins MT, Moyo TK, et al. The delta isoform of PI3K predominates in chronic myelomonocytic leukemia and can be targeted effectively with umbralisib and ruxolitinib. Exp Hematol. 2021. https://doi.org/10.1016/j.exphem.2021.02.008.

  66. Deininger MWN, Tyner JW, Solary E. Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer. 2017;17:425–40.

    Article  CAS  PubMed  Google Scholar 

  67. Lee SC-W, Dvinge H, Kim E, Cho H, Micol J-B, Chung YR, et al. Modulation of splicing catalysis for therapeutic targeting of leukemia with mutations in genes encoding spliceosomal proteins. Nat Med. 2016;22:672–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Seiler M, Yoshimi A, Darman R, Chan B, Keaney G, Thomas M, et al. H3B-8800, an orally available small-molecule splicing modulator, induces lethality in spliceosome-mutant cancers. Nat Med. 2018;24:497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Steensma DP, Wermke M, Klimek VM, Greenberg PL, Font P, Komrokji RS, et al. Results of a clinical trial of H3B-8800, a splicing modulator, in patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML) or chronic myelomonocytic leukemia (CMML). Blood. 2019;134:673.

    Article  Google Scholar 

  70. Pemmaraju N, Lane AA, Sweet KL, Stein AS, Vasu S, Blum W, et al. Tagraxofusp in Blastic Plasmacytoid Dendritic-cell Neoplasm. N. Engl J Med. 2019;380:1628–37.

    Article  CAS  PubMed  Google Scholar 

  71. Mani R, Goswami S, Gopalakrishnan B, Ramaswamy R, Wasmuth R, Tran M, et al. The interleukin-3 receptor CD123 targeted SL-401 mediates potent cytotoxic activity against CD34(+)CD123(+) cells from acute myeloid leukemia/myelodysplastic syndrome patients and healthy donors. Haematologica. 2018;103:1288–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Krishnan A, Li B, Pagane M, McGovern E, Stone-Molloy Z, Chen J, et al. Evaluation of combination tagraxofusp (SL-401) and hypomethylating agent (HMA) therapy for the treatment of chronic myelomonocytic leukemia (CMML). Blood. 2018;132:1809.

    Article  Google Scholar 

  73. Pemmaraju N, Ali H, Gupta V, Schiller GJ, Lee S, Yacoub A, et al. Results from ongoing phase 1/2 clinical trial of tagraxofusp (SL-401) in patients with intermediate or high risk relapsed/refractory myelofibrosis. J Clin Oncol. 2019;37(15_suppl):7058.

    Article  Google Scholar 

  74. Lucas N, Duchmann M, Rameau P, Noël F, Michea P, Saada V, et al. Biology and prognostic impact of clonal plasmacytoid dendritic cells in chronic myelomonocytic leukemia. Leukemia. 2019;33:2466–80.

    Article  CAS  PubMed  Google Scholar 

  75. Mangaonkar AA, Reichard KK, Binder M, Coltro G, Lasho TL, Carr RM, et al. Bone marrow dendritic cell aggregates associate with systemic immune dysregulation in chronic myelomonocytic leukemia. Blood Adv. 2020;4:5425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Baerlocher GM, Oppliger Leibundgut E, Ottmann OG, Spitzer G, Odenike O, McDevitt MA, et al. Telomerase inhibitor imetelstat in patients with essential thrombocythemia. N. Engl J Med. 2015;373:920–8.

    Article  CAS  PubMed  Google Scholar 

  77. Tefferi A, Lasho TL, Begna KH, Patnaik MM, Zblewski DL, Finke CM, et al. A pilot study of the telomerase inhibitor imetelstat for myelofibrosis. N. Engl J Med. 2015;373:908–19.

    Article  CAS  PubMed  Google Scholar 

  78. Platzbecker U, Fenaux P, Steensma DP, Eygen K Van, Raza A, Germing U, et al. Treatment with imetelstat provides durable transfusion independence (TI) in heavily transfused non-del(5Q) lower risk MDS (LRMDS) relapsed/refractory (R/R) to erythropoiesis stimulating agents (ESA). HemaSphere 2020; EHA25 Abstract Book: Abstract S183.

  79. Papapetrou EP. Modeling myeloid malignancies with patient-derived iPSCs. Exp Hematol. 2019;71:77–84.

    Article  CAS  PubMed  Google Scholar 

  80. Beke A, Laplane L, Riviere J, Yang Q, Torres-Martin M, Dayris T, et al. Multilayer intraclonal heterogeneity in chronic myelomonocytic leukemia. Haematologica. 2020;105:112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang Y, He L, Selimoglu-Buet D, Jego C, Morabito M, Willekens C, et al. Engraftment of chronic myelomonocytic leukemia cells in immunocompromised mice supports disease dependency on cytokines. Blood Adv. 2017;1:972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J, Taussig D, et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl Med. 2014;3:520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wiseman DH, Baker SM, Dongre AV, Gurashi K, Storer JA, Somervaille TC, et al. Chronic myelomonocytic leukaemia stem cell transcriptomes anticipate disease morphology and outcome. EBioMedicine. 2020;58:102904.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, et al. IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell. 2011;20:661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Droin N, Jacquel A, Hendra J-B, Racoeur C, Truntzer C, Pecqueur D, et al. Alpha-defensins secreted by dysplastic granulocytes inhibit the differentiation of monocytes in chronic myelomonocytic leukemia. Blood. 2010;115:78–88.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niyongere S, Lucas N, Zhou J-M, Sansil S, Pomicter AD, Balasis ME, et al. Heterogeneous expression of cytokines accounts for clinical diversity and refines prognostication in CMML. Leukemia. 2019;33:205–16.

    Article  CAS  PubMed  Google Scholar 

  88. Franzini A, Pomicter AD, Yan D, Khorashad JS, Tantravahi SK, Than H, et al. The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Adv. 2019;3:2949–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10:775–83.

    Article  PubMed  CAS  Google Scholar 

  90. Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015;523:183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Savona MR, Malcovati L, Komrokji R, Tiu RV, Mughal TI, Orazi A, et al. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AR wrote the original draft and made figures. MMP, OC, EP, and ES revised the manuscript. ES supervised the work.

Corresponding author

Correspondence to Eric Solary.

Ethics declarations

Competing interests

ES group was supported by research grants from Stemline and from Servier laboratories. EP has research funding from Incyte, Kura, and BMS. EP has received honorarium from Novartis, Taiho, Stemline, and Blueprint medicines.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renneville, A., Patnaik, M.M., Chan, O. et al. Increasing recognition and emerging therapies argue for dedicated clinical trials in chronic myelomonocytic leukemia. Leukemia 35, 2739–2751 (2021). https://doi.org/10.1038/s41375-021-01330-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01330-1

Search

Quick links