Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lymphoma

Lymphoma and multiple myeloma in cohorts of persons exposed to ionising radiation at a young age

Abstract

There is limited evidence that non-leukaemic lymphoid malignancies are radiogenic. As radiation-related cancer risks are generally higher after childhood exposure, we analysed pooled lymphoid neoplasm data in nine cohorts first exposed to external radiation aged <21 years using active bone marrow (ABM) and, where available, lymphoid system doses, and harmonised outcome classification. Relative and absolute risk models were fitted. Years of entry spanned 1916–1981. At the end of follow-up (mean 42.1 years) there were 593 lymphoma (422 non-Hodgkin (NHL), 107 Hodgkin (HL), 64 uncertain subtype), 66 chronic lymphocytic leukaemia (CLL) and 122 multiple myeloma (MM) deaths and incident cases among 143,136 persons, with mean ABM dose 0.14 Gy (range 0–5.95 Gy) and mean age at first exposure 6.93 years. Excess relative risk (ERR) was not significantly increased for lymphoma (ERR/Gy = −0.001; 95% CI: −0.255, 0.279), HL (ERR/Gy = −0.113; 95% CI: −0.669, 0.709), NHL + CLL (ERR/Gy = 0.099; 95% CI: −0.149, 0.433), NHL (ERR/Gy = 0.068; 95% CI: −0.253, 0.421), CLL (ERR/Gy = 0.320; 95% CI: −0.678, 1.712), or MM (ERR/Gy = 0.149; 95% CI: −0.513, 1.063) (all p-trend > 0.4). In six cohorts with estimates of lymphatic tissue dose, borderline significant increased risks (p-trend = 0.02–0.07) were observed for NHL + CLL, NHL, and CLL. Further pooled epidemiological studies are needed with longer follow-up, central outcome review by expert hematopathologists, and assessment of radiation doses to lymphoid tissues.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2

Data availability

The data is available from the principal author upon request.

Code availability

All analysis code is available from the principal author upon request.

References

  1. 1.

    United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 Report. Annex A. Epidemiological studies of radiation and cancer. New York: United Nations; 2008. p. 13–322.

    Google Scholar 

  2. 2.

    Linet MS, Schubauer-Berigan MK, Weisenburger DD, Richardson DB, Landgren O, Blair A, et al. Chronic lymphocytic leukaemia: an overview of aetiology in light of recent developments in classification and pathogenesis. Br J Haematol. 2007;139:672–86.

    PubMed  Article  Google Scholar 

  3. 3.

    Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990. Radiat Res. 1996;146:1–27.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Armstrong B, Brenner DJ, Baverstock K, Cardis E, Green A, Guilmette RA, et al. Radiation. Volume 100D. A review of human carcinogens. Lyon, France: International Agency for Research on Cancer; 2012. p. 1–341.

    Google Scholar 

  5. 5.

    Richardson DB, Sugiyama H, Wing S, Sakata R, Grant E, Shimizu Y, et al. Positive associations between ionizing radiation and lymphoma mortality among men. Am J Epidemiol. 2009;169:969–76.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Hsu W-L, Preston DL, Soda M, Sugiyama H, Funamoto S, Kodama K, et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950-2001. Radiat Res. 2013;179:361–82.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Kim CJ, Freedman DM, Curtis RE, Berrington de Gonzalez A, Morton LM. Risk of non-Hodgkin lymphoma after radiotherapy for solid cancers. Leuk Lymphoma. 2013;54:1691–7.

    PubMed  Article  Google Scholar 

  8. 8.

    Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, O’Hagan JA, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2:e276–e281.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Zablotska LB, Bazyka D, Lubin JH, Gudzenko N, Little MP, Hatch M, et al. Radiation and the risk of chronic lymphocytic and other leukemias among Chornobyl cleanup workers. Environ Health Perspect. 2013;121:59–65.

    PubMed  Article  Google Scholar 

  10. 10.

    Harbron RW, Chapple CL, O’Sullivan JJ, Lee C, McHugh K, Higueras M, et al. Cancer incidence among children and young adults who have undergone x-ray guided cardiac catheterization procedures. Eur J Epidemiol. 2018;33:393–401.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Harbron RW, Pasqual E. Ionising radiation as a risk factor for lymphoma: a review. J Radio Prot. 2020;40:R151–R185.

    Article  Google Scholar 

  12. 12.

    Hunter N, Haylock R. Radiation risks of lymphoma and multiple myeloma incidence in the updated NRRW-3 cohort in the UK: 1950-2011. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/abee96.

  13. 13.

    Kesminiene A, Evrard AS, Ivanov VK, Malakhova IV, Kurtinaitis J, Stengrevics A, et al. Risk of hematological malignancies among Chernobyl liquidators. Radiat Res. 2008;170:721–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Little MP, Wakeford R, Borrego D, French B, Zablotska LB, Adams MJ, et al. Leukaemia and myeloid malignancy among people exposed to low doses (<100 mSv) of ionising radiation during childhood: a pooled analysis of nine historical cohort studies. Lancet Haematol. 2018;5:e346–e358.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Candéias SM, Kabacik S, Olsen A-K, Eide DM, Brede DA, Bouffler S, et al. Ionizing radiation does not impair the mechanisms controlling genetic stability during T cell receptor gene rearrangement in mice. Int J Radiat Biol. 2018;94:357–65.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Johnsen HE, Bogsted M, Schmitz A, Bodker JS, El-Galaly TC, Johansen P, et al. The myeloma stem cell concept, revisited: from phenomenology to operational terms. Haematologica. 2016;101:1451–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    International Commission on Radiological Protection (ICRP). Stem cell biology with respect to carcinogenesis aspects of radiological protection. ICRP Publication 131. Ann ICRP. 2015;44(3–4):1–357.

    Google Scholar 

  18. 18.

    Gault N, Verbiest T, Badie C, Romeo P-H, Bouffler S. Haematopoietic stem and progenitor cell responses to low radiation doses-implications for leukaemia risk. Int J Radiat Biol. 2019:95:892–9.

  19. 19.

    Lee C, Morton LM, Berrington de Gonzalez A. A novel method to estimate lymphocyte dose and application to pediatric and young adult CT patients in the United Kingdom. Radiat Prot Dosim. 2018;178:116–21.

    Article  Google Scholar 

  20. 20.

    Little MP. Leukaemia following childhood radiation exposure in the Japanese atomic bomb survivors and in medically exposed groups. Radiat Prot Dosim. 2008;132:156–65.

    CAS  Article  Google Scholar 

  21. 21.

    Krishnan B, Morgan GJ. Non-Hodgkin lymphoma secondary to cancer chemotherapy. Cancer Epidemiol Biomark Prev. 2007;16:377–80.

    CAS  Article  Google Scholar 

  22. 22.

    Davis FG, Boice JD Jr., Hrubec Z, Monson RR. Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res. 1989;49:6130–6.

    CAS  PubMed  Google Scholar 

  23. 23.

    Zablotska LB, Little MP, Cornett RJ. Potential increased risk of ischemic heart disease mortality with significant dose fractionation in the Canadian fluoroscopy cohort study. Am J Epidemiol. 2014;179:120–31.

    PubMed  Article  Google Scholar 

  24. 24.

    Dondon MG, de Vathaire F, Shamsaldin A, Doyon F, Diallo I, Ligot L, et al. Cancer mortality after radiotherapy for a skin hemangioma during childhood. Radiother Oncol. 2004;72:87–93.

    PubMed  Article  Google Scholar 

  25. 25.

    Lindberg S, Karlsson P, Arvidsson B, Holmberg E, Lunberg LM, Wallgren A. Cancer incidence after radiotherapy for skin haemangioma during infancy. Acta Oncol. 1995;34:735–40.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Lundell M, Holm L-E. Mortality from leukemia after irradiation in infancy for skin hemangioma. Radiat Res. 1996;145:595–601.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Lundell M, Mattsson A, Karlsson P, Holmberg E, Gustafsson A, Holm L-E. Breast cancer risk after radiotherapy in infancy: a pooled analysis of two Swedish cohorts of 17,202 infants. Radiat Res. 1999;151:626–32.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Sadetzki S, Chetrit A, Lubina A, Stovall M, Novikov I. Risk of thyroid cancer after childhood exposure to ionizing radiation for tinea capitis. J Clin Endocrinol Metab. 2006;91:4798–804.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Ron E, Modan B, Boice JD Jr. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol. 1988;127:713–25.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Adams MJ, Dozier A, Shore RE, Lipshultz SE, Schwartz RG, Constine LS, et al. Breast cancer risk 55+ years after irradiation for an enlarged thymus and its implications for early childhood medical irradiation today. Cancer Epidemiol Biomark Prev. 2010;19:48–58.

    CAS  Article  Google Scholar 

  31. 31.

    Adams MJ, Shore RE, Dozier A, Lipshultz SE, Schwartz RG, Constine LS, et al. Thyroid cancer risk 40+ years after irradiation for an enlarged thymus: an update of the Hempelmann cohort. Radiat Res. 2010;174:753–62.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Ronckers CM, Land CE, Miller JS, Stovall M, Lonstein JE, Doody MM. Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res. 2010;174:83–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Lee C, Lamart S, Moroz BE. Computational lymphatic node models in pediatric and adult hybrid phantoms for radiation dosimetry. Phys Med Biol. 2013;58:N59–82.

    PubMed  Article  Google Scholar 

  34. 34.

    Sadetzki S, Chetrit A, Mandelzweig L, Nahon D, Freedman L, Susser E, et al. Childhood exposure to ionizing radiation to the head and risk of schizophrenia. Radiat Res. 2011;176:670–7.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Jaffe ES, Harris NL, Stein H, Isaacson PG. Classification of lymphoid neoplasms: the microscope as a tool for disease discovery. Blood. 2008;112:4384–99.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Morton LM, Turner JJ, Cerhan JR, Linet MS, Treseler PA, Clarke CA, et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood. 2007;110:695–708.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Turner JJ, Morton LM, Linet MS, Clarke CA, Kadin ME, Vajdic CM, et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116:e90–98.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Yu E-M, Kittai A, Tabbara IA. Chronic lymphocytic leukemia: current concepts. Anticancer Res. 2015;35:5149–65.

    CAS  PubMed  Google Scholar 

  39. 39.

    Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2001. p. 1–352.

    Google Scholar 

  40. 40.

    Kendall GM, Little MP, Wakeford R, Bunch KJ, Miles JCH, Vincent TJ, et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in Great Britain during 1980-2006. Leukemia. 2013;27:3–9.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Spycher BD, Lupatsch JE, Zwahlen M, Roosli M, Niggli F, Grotzer MA, et al. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect. 2015;123:622–8.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Krestinina LY, Davis FG, Schonfeld S, Preston DL, Degteva M, Epifanova S, et al. Leukaemia incidence in the Techa River Cohort: 1953-2007. Br J Cancer. 2013;109:2886–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Hastie TJ, Tibshirani RJ. Generalized additive models. Boca Raton, FL: Chapman & Hall/CRC; 1990. p. 1–350.

    Google Scholar 

  44. 44.

    McCullagh P, Nelder JA. Generalized linear models. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC; 1989. p. 1–526.

    Book  Google Scholar 

  45. 45.

    Risk Sciences International. Epicure version 2.0.1.0. 55 Metcalfe, K1P 6L5. Canada: Risk Sciences International;; 2015.

    Google Scholar 

  46. 46.

    Little MP, Wakeford R, Lubin JH, Kendall GM. The statistical power of epidemiological studies analyzing the relationship between exposure to ionizing radiation and cancer, with special reference to childhood leukemia and natural background radiation. Radiat Res. 2010;174:387–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    International Commission on Radiological Protection (ICRP). Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Ann ICRP. 2001;32(3–4):1–265. i-xi.

    Google Scholar 

  48. 48.

    International Commission on Radiological Protection (ICRP). Report of the Task Group on reference man. ICRP Publication 23. Ann ICRP. 1975;23:1–480.

    Google Scholar 

  49. 49.

    Linet MS, Schubauer-Berigan MK, Berrington de Gonzalez A. Outcome assessment in epidemiological studies of low-dose radiation exposure and cancer risks: sources, level of ascertainment, and misclassification. J Natl Cancer Inst Monogr. 2020;2020:154–75.

    PubMed  Article  Google Scholar 

  50. 50.

    Little MP, Weiss HA, Boice JD Jr., Darby SC, Day NE, Muirhead CR. Risks of leukemia in Japanese atomic bomb survivors, in women treated for cervical cancer, and in patients treated for ankylosing spondylitis. Radiat Res. 1999;152:280–92.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect. 2005;113:1–5.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Schubauer-Berigan MK, Daniels RD, Fleming DA, Markey AM, Couch JR, Ahrenholz SH, et al. Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature. Br J Haematol. 2007;139:799–808.

    PubMed  Article  Google Scholar 

  53. 53.

    Zent CS, Kyasa MJ, Evans R, Schichman SA. Chronic lymphocytic leukemia incidence is substantially higher than estimated from tumor registry data. Cancer. 2001;92:1325–30.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Turesson I, Linet MS, Bjorkholm M, Kristinsson SY, Goldin LR, Caporaso NE, et al. Ascertainment and diagnostic accuracy for hematopoietic lymphoproliferative malignancies in Sweden 1964-2003. Int J Cancer. 2007;121:2260–6.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Division of Cancer Epidemiology and Genetics. The Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan is a public interest foundation funded by the Japanese Ministry of Health, Labour and Welfare (MHLW) and the US Department of Energy (DOE). The research was also funded in part through DOE award DE-HS0000031 to the National Academy of Sciences. Dr. Zablotska’s work was supported by National Cancer Institute of the National Institutes of Health under awards R03CA188614 and R01CA197422. This publication was supported by RERF Research Protocol A1-16. The views of the authors do not necessarily reflect those of the two governments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark P. Little.

Ethics declarations

Conflict of interest

RW receives a consultancy fee as a member of the Technical Working Party of the Compensation Scheme for Radiation-linked Diseases (http://www.csrld.org.uk). No other authors report conflicts of interest.

Ethical approval

The study cohort has been declared exempt by the National Cancer Institute Special Studies Institution Review Board, because using pre-existing approved data. Obtaining informed consent from all study subjects was therefore not necessary.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Little, M.P., Wakeford, R., Zablotska, L.B. et al. Lymphoma and multiple myeloma in cohorts of persons exposed to ionising radiation at a young age. Leukemia (2021). https://doi.org/10.1038/s41375-021-01284-4

Download citation

Search

Quick links