Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myelogenous leukemia

Small-molecule inhibitor targeting the Hsp70-Bim protein–protein interaction in CML cells overcomes BCR-ABL-independent TKI resistance

Abstract

Herein, we screened a novel inhibitor of the Hsp70-Bim protein-protein interaction (PPI), S1g-2, from a Bcl-2 inhibitor library; this compound specifically disrupted the Hsp70-Bim PPI by direct binding to an unknown site adjacent to that of an allosteric Hsp70 inhibitor MKT-077, showing binding affinity in sub-μM concentration range. S1g-2 exhibited overall 5–10-fold higher apoptosis-inducing activity in CML cells, primary CML blasts, and BCR-ABL-transformed BaF3 cells than other cancer cells, normal lymphocytes, and BaF3 cells, illustrating Hsp70-Bim PPI driven by BCR-ABL protects CML through oncoclient proteins that enriched in three pathways: eIF2 signaling, the regulation of eIF4E and p70S6K signaling, and the mTOR signaling pathways. Moreover, S1g-2 progressively enhanced lethality along with the increase in BCR-ABL-independent TKI resistance in the K562 cell lines and is more effective in primary samples from BCR-ABL-independent TKI-resistant patients than those from TKI-sensitive patients. By comparing the underlying mechanisms of S1g-2, MKT-077, and an ATP-competitive Hsp70 inhibitor VER-155008, the Hsp70-Bim PPI was identified to be a CML-specific target to protect from TKIs through the above three oncogenic signaling pathways. The in vivo activity against CML and low toxicity endows S1g-2 a first-in-class promising drug candidate for both TKI-sensitive and resistant CML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery of S1g-2 as a selective inhibitor to block interactions of Hsp70-Bim.
Fig. 2: S1g-2 selectively disrupts the Hsp70-Bim PPI to induce apoptosis in CML.
Fig. 3: S1g-2 identifies Hsp70-Bim oncoclient proteins in CML cells.
Fig. 4: Hsp70-Bim PPI, not Hsp70 expression, confers increased level of BCR-ABL-independent TKIs resistance.
Fig. 5: Hsp70-Bim PPI, not Hsp70 expression, confers increased level of BCR-ABL-independent TKIs resistance.
Fig. 6: In vivo efficacy of S1g-2 in K562 xenograft.

Similar content being viewed by others

References

  1. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.

    Article  CAS  PubMed  Google Scholar 

  2. Sattler M, Griffin JD. Mechanisms of transformation by the BCR/ABL oncogene. Int J Hematol. 2001;73:278–91.

    Article  CAS  PubMed  Google Scholar 

  3. Hantschel O, Warsch W, Eckelhart E, Kaupe I, Grebien F, Wagner KU, et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat Chem Biol. 2012;8:285–93.

    Article  CAS  PubMed  Google Scholar 

  4. Hoelbl A, Schuster C, Kovacic B, Zhu B, Wickre M, Hoelzl MA, et al. Stat5 is indispensable for the maintenance of bcr/abl‐positive leukaemia. EMBO Mol Med. 2010;2:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Naughton R, Quiney C, Turner SD, Cotter TG. Bcr-Abl-mediated redox regulation of the PI3K/AKT pathway. Leukemia 2009;23:1432–40.

    Article  CAS  PubMed  Google Scholar 

  6. Cilloni D, Saglio G. Molecular pathways: BCR-ABL. Clin Cancer Res. 2012;18:930–7.

    Article  CAS  PubMed  Google Scholar 

  7. Steelman LS, Franklin RA, Abrams SL, Chappell W, Kempf CR, Bäsecke J, et al. Roles of the Ras/Raf/MEK/ERK pathway in leukemia therapy. Leukemia. 2011;25:1080–94.

    Article  CAS  PubMed  Google Scholar 

  8. Baum KJ, Ren R. Effect of Ras inhibition in hematopoiesis and BCR/ABL leukemogenesis. J Hematol Oncol. 2008;1:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hazlehurst LA, Bewry NN, Nair RR, Pinilla-Ibarz J. Signaling networks associated with BCR-ABL-dependent transformation. Cancer Control. 2009;16:100–7.

    Article  PubMed  Google Scholar 

  10. Ross TS, Mgbemena VE. Re-evaluating the role of BCR/ABL in chronic myelogenous leukemia. Mol Cell Oncol. 2014;1:e963450.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Cortes J, Rea D, Lipton JH. Treatment-free remission with first- and second-generation tyrosine kinase inhibitors. Am J Hematol. 2019;94:346–57.

    PubMed  Google Scholar 

  12. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  13. Loscocco F, Visani G, Galimberti S, Curti A, Isidori A. BCR-ABL independent mechanisms of resistance in chronic myeloid leukemia. Front Oncol. 2019;9:939.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369:1783–96.

    Article  CAS  PubMed  Google Scholar 

  16. Murphy ME. The HSP70 family and cancer. Carcinogenesis. 2013;34:1181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sherman MY, Gabai VL. Hsp70 in cancer: back to the future. Oncogene. 2015;34:4153–61.

    Article  CAS  PubMed  Google Scholar 

  18. Lianos GD, Alexiou GA, Mangano A, Mangano A, Rausei S, Boni L, et al. The role of heat shock proteins in cancer. Cancer Lett. 2015;360:114–8.

    Article  CAS  PubMed  Google Scholar 

  19. Wu J, Liu T, Rios Z, Mei Q, Lin X, Cao S. Heat shock proteins and cancer. Trends Pharm Sci. 2017;38:226–56.

    Article  CAS  PubMed  Google Scholar 

  20. Nimmanapalli R, O’Bryan E, Huang M. Molecular characterization and sensitivity of STI-571 (imatinib mesylate, Gleevec)-resistant, BcrAbl-positive, human acute leukemia cells retain sensitivity to SRC kinase inhibitor PD180970 and 17-allylamino-17-demethoxygeldanamycin (17-AAG). Cancer Res. 2002;62:5761–9.

    CAS  PubMed  Google Scholar 

  21. Guo F, Sigua C, Bali P, George P, Fiskus W, Scuto A, et al. Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells. Blood. 2005;105:1246–55.

    Article  CAS  PubMed  Google Scholar 

  22. Pocaly M, Lagarde V, Etienne G, Ribeil JA, Claverol S, Bonneu M, et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia. 2007;21:93–101.

    Article  CAS  PubMed  Google Scholar 

  23. Colavita I, Esposito N, Martinelli R, Catanzano F, Melo JV, Pane F, et al. Gaining insights into the Bcr-Abl activity-independent mechanisms of resistance to imatinib mesylate in KCL22 cells: a comparative proteomic approach. Biochim Biophys Acta. 2010;1804:1974–87.

    Article  CAS  PubMed  Google Scholar 

  24. Gonzalez M, De Brasi C, Ferri C, Bengió R, Bianchini M, Larripa I. CAMKIIγ, HSP70 and HSP90 transcripts are differentially expressed in chronic myeloid leukemia cells from patients with resistant mutated disease. Leuk Lymphoma. 2014;55:2101–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar S, Stokes J, Singh UP, Scissum Gunn K, Acharya A, Manne U, et al. Targeting Hsp70: a possible therapy for cancer. Cancer Lett. 2016;374:156–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-based protein quality control for treatment of adult onset neurodegenerative diseases. Annu Rev Pharm Toxicol. 2015;55:353–71.

    Article  CAS  Google Scholar 

  27. Klaips CL, Jayaraj GG, Hartl FU. Pathways of cellular proteostasis in aging and disease. J Cell Biol. 2018;217:51–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J Pharm. 2019;176:1829–38.

    Article  CAS  Google Scholar 

  29. Shrestha L, Patel HJ, Chiosis G. Chemical tools to investigate mechanisms associated with HSP90 and HSP70 in disease. Cell Chem Biol. 2016;23:158–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, et al. Allosteric modulators of HSP90 and HSP70: dynamics meets function through structure-based drug design. J Med Chem. 2019;62:60–87.

    Article  CAS  PubMed  Google Scholar 

  31. Gestwicki JE, Shao H. Inhibitors and chemical probes for molecular chaperone networks. J Biol Chem. 2019;294:2151–61.

    Article  CAS  PubMed  Google Scholar 

  32. Sanchez J, Carter TR, Cohen MS, Blagg BSJ. Old and new approaches to target the Hsp90 chaperone. Curr Cancer Drug Targets. 2020;20:253–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moulick K, Ahn JH, Zong H, Rodina A, Cerchietti L, Gomes DaGama EM, et al. Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90. Nat Chem Biol. 2011;7:818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nayar U, Lu P, Goldstein RL, Vider J, Ballon G, Rodina A, et al. Targeting the Hsp90-associated viral oncoproteome in gammaherpesvirus-associated malignancies. Blood. 2013;122:2837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taldone T, Ochiana SO, Patel PD, Chiosis G. Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharm Sci. 2014;35:592–603.

    Article  CAS  PubMed  Google Scholar 

  36. Colvin TA, Gabai VL, Gong J, Calderwood SK, Li H, Gummuluru S, et al. Hsp70-Bag3 interactions regulate cancer-related signaling networks. Cancer Res. 2014;74:4731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guo Z, Song T, Wang Z, Lin D, Cao K, Liu P, et al. The chaperone Hsp70 is a BH3 receptor activated by the pro-apoptotic Bim to stabilize anti-apoptotic clients. J Biol Chem. 2020;295:12900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Z, Wu G, Xie F, Song T, Chang X. 3-Thiomorpholin-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) based molecules as potent, dual inhibitors of B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia sequence 1 (Mcl-1): structure-based design and structure-activity relationship studies. J Med Chem. 2011;54:1101–5.

    Article  CAS  PubMed  Google Scholar 

  39. Song T, Yu X, Liu Y, Li X, Chai G, Zhang Z. Discovery of a small-molecule pBcl-2 inhibitor that overcomes pBcl-2-mediated resistance to apoptosis. Chembiochem. 2015;16:757–65.

    Article  CAS  PubMed  Google Scholar 

  40. Kimura S, Naito H, Segawa H, Kuroda J, Yuasa T, Sato K, et al. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood. 2005;106:3948–54.

    Article  CAS  PubMed  Google Scholar 

  41. Culjkovic-Kraljacic B, Baguet A, Volpon L, Amri A, Borden KL. The oncogene eIF4E reprograms the nuclear pore complex to promote mRNA export and oncogenic transformation. Cell Rep. 2012;2:207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, et al. Differential requirements for eIF4E dose in normal development and cancer. Cell. 2015;162:59–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our NMR work was performed at the National Center for Protein Science Shanghai. We thank Bin Wu and Hongjuan Xue for the help at the facility. This research was supported by the National Natural Science Foundation of China (81903462 and 82073703), the China Postdoctoral Science Foundation (2018M641694), and the Fundamental Research Funds for the Central University (DUT20LK28 and DUT20YG133).

Author information

Authors and Affiliations

Authors

Contributions

TS and ZW performed FPA and ITC experiments, and analyzed data from drug sensitivity analysis, FPA, ITC, and iTRAQ-based quantitative proteomic data. Z.X collected blood sample from CML patients and healthy donors, and performed isolation and culture of blasts, lymphocytes and CD34 + CB cells analysis. TS and YG established K562 xenograft model and performed drug treatment experiments. TS, YG, ZG, and HZ performed co-immunoprecipitation (co-IP), immunoblotting, RT-PCR, and apoptosis assay. ZG contributed to establish of TKI-resistant cell lines. DL contributed to TROSY-HSQC NMR spectrum analysis. HP performed protein expression and purification. ZW, XZ, and HW contributed the synthesis of compounds and molecular docking. FY contributed to the preparation of heat-map data. ZZ conceived and designed the study, directed and supervised the research. ZZ and TS wrote the manuscript. All authors contributed to writing the paper and approved the final manuscript.

Corresponding authors

Correspondence to Donghai Lin or Zhichao Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Guo, Y., Xue, Z. et al. Small-molecule inhibitor targeting the Hsp70-Bim protein–protein interaction in CML cells overcomes BCR-ABL-independent TKI resistance. Leukemia 35, 2862–2874 (2021). https://doi.org/10.1038/s41375-021-01283-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01283-5

This article is cited by

Search

Quick links