Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ANIMAL MODELS

CCR5 maintains macrophages in the bone marrow and drives hematopoietic failure in a mouse model of severe aplastic anemia

Abstract

Severe aplastic anemia (SAA) is an acquired, T cell-driven bone marrow (BM) failure disease characterized by elevated interferon gamma (IFNγ), loss of hematopoietic stem cells (HSCs), and altered BM microenvironment, including dysfunctional macrophages (MΦs). T lymphocytes are therapeutic targets for treating SAA, however, the underlying mechanisms driving SAA development and how innate immune cells contribute to disease remain poorly understood. In a murine model of SAA, increased beta-chemokines correlated with disease and were partially dependent on IFNγ. IFNγ was required for increased expression of the chemokine receptor CCR5 on MΦs. CCR5 antagonism in murine SAA improved survival, correlating with increased platelets and significantly increased platelet-biased CD41hi HSCs. T cells are key drivers of disease, however, T cell-specific CCR5 expression and T cell-derived CCL5 were not necessary for disease. CCR5 antagonism reduced BM MΦs and diminished their expression of Tnf and Ccl5, correlating with reduced frequencies of IFNγ-secreting BM T cells. Mechanistically, CCR5 was intrinsically required for maintaining BM MΦs during SAA. Ccr5 expression was significantly increased in MΦs from aged mice and humans, relative to young counterparts. Our data identify CCR5 signaling as a key axis promoting the development of IFNγ-dependent BM failure, particularly relevant in aging where Ccr5 expression is elevated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased chemokines in the BM during SAA in mice.
Fig. 2: CCR5 expression is increased on macrophages during SAA.
Fig. 3: CCR5 antagonism with maraviroc improves survival and bone marrow cellularity when administered during SAA.
Fig. 4: The impact of CCR5 antagonism on T lymphocytes in SAA pathogenesis.
Fig. 5: CCR5 antagonism alters macrophage numbers and function during SAA.
Fig. 6: Intrinsic role for CCR5 in macrophages in SAA.
Fig. 7: Chemokines and their receptors in aged mice and humans.

Similar content being viewed by others

References

  1. Young NS. Aplastic anemia. N Engl J Med. 2018;379:1643–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen J, Brandt JS, Ellison FM, Calado RT, Young NS. Defective stromal cell function in a mouse model of infusion-induced bone marrow failure. Exp Hematol. 2005;33:901–8.

    Article  CAS  PubMed  Google Scholar 

  3. Dufour C, Corcione A, Svahn J, Haupt R, Battilana N, Pistoia V. Interferon gamma and tumour necrosis factor alpha are overexpressed in bone marrow T lymphocytes from paediatric patients with aplastic anaemia. Br J Haematol. 2001;115:1023–31.

    Article  CAS  PubMed  Google Scholar 

  4. Sloand E, Kim S, Maciejewski JP, Tisdale J, Follmann D, Young NS. Intracellular interferon-gamma in circulating and marrow T cells detected by flow cytometry and the response to immunosuppressive therapy in patients with aplastic anemia. Blood. 2002;100:1185–91.

    Article  CAS  PubMed  Google Scholar 

  5. Nistico A, Young NS. Gamma-interferon gene expression in the bone marrow of patients with aplastic anemia. Ann Intern Med. 1994;120:463–9.

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Lipovsky K, Ellison FM, Calado RT, Young NS. Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure. Blood. 2004;104:1671–8.

    Article  CAS  PubMed  Google Scholar 

  7. Chen J, Feng X, Desierto MJ, Keyvanfar K, Young NS. IFN-gamma-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure. Blood. 2015;126:2621–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morales-Mantilla DE, King KY. The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease. Curr Stem Cell Rep. 2018;4:264–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zoumbos NC, Djeu JY, Young NS. Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes in vitro. J Immunol. 1984;133:769–74.

  10. de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA. Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood. 2013;121:3578–85.

    Article  PubMed  CAS  Google Scholar 

  11. Marsh JC, Ball SE, Cavenagh J, Darbyshire P, Dokal I, Gordon-Smith EC, et al. Guidelines for the diagnosis and management of aplastic anaemia. Br J Haematol. 2009;147:43–70.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta V, Eapen M, Brazauskas R, Carreras J, Aljurf M, Gale RP, et al. Impact of age on outcomes after bone marrow transplantation for acquired aplastic anemia using HLA-matched sibling donors. Haematologica. 2010;95:2119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ghimire S, Weber D, Mavin E, Wang XN, Dickinson AM, Holler E. Pathophysiology of GvHD and other HSCT-related major complications. Front Immunol. 2017;8:79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Winkler T, Fan X, Cooper J, Desmond R, Young DJ, Townsley DM, et al. Treatment optimization and genomic outcomes in refractory severe aplastic anemia treated with eltrombopag. Blood. 2019;133:2575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun L, Babushok DV. Secondary myelodysplastic syndrome and leukemia in acquired aplastic anemia and paroxysmal nocturnal hemoglobinuria. Blood. 2020;136:36–49.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132:1553–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin FC, Karwan M, Saleh B, Hodge DL, Chan T, Boelte KC, et al. IFN-gamma causes aplastic anemia by altering hematopoietic stem/progenitor cell composition and disrupting lineage differentiation. Blood. 2014;124:3699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bloom ML, Wolk AG, Simon-Stoos KL, Bard JS, Chen J, Young NS. A mouse model of lymphocyte infusion-induced bone marrow failure. Exp Hematol. 2004;32:1163–72.

    Article  CAS  PubMed  Google Scholar 

  19. Roderick JE, Gonzalez-Perez G, Kuksin CA, Dongre A, Roberts ER, Srinivasan J, et al. Therapeutic targeting of NOTCH signaling ameliorates immune-mediated bone marrow failure of aplastic anemia. J Exp Med. 2013;210:1311–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCabe A, Smith JNP, Costello A, Maloney J, Katikaneni D, MacNamara KC. Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression. Haematologica. 2018;103:1451–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun W, Wu Z, Lin Z, Hollinger M, Chen J, Feng X, et al. Macrophage TNF-alpha licenses donor T cells in murine bone marrow failure and can be implicated in human aplastic anemia. Blood. 2018;132:2730–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lan YY, Wang YQ, Liu Y. CCR5 silencing reduces inflammatory response, inhibits viability, and promotes apoptosis of synovial cells in rat models of rheumatoid arthritis through the MAPK signaling pathway. J Cell Physiol. 2019;234:18748–62.

    Article  CAS  PubMed  Google Scholar 

  23. Hardison JL, Wrightsman RA, Carpenter PM, Kuziel WA, Lane TE, Manning JE. The CC chemokine receptor 5 is important in control of parasite replication and acute cardiac inflammation following infection with Trypanosoma cruzi. Infect Immun. 2006;74:135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carr DJ, Ash J, Lane TE, Kuziel WA. Abnormal immune response of CCR5-deficient mice to ocular infection with herpes simplex virus type 1. J Gen Virol. 2006;87:489–99.

    Article  CAS  PubMed  Google Scholar 

  25. Kroetz DN, Deepe GS Jr. An aberrant thymus in CCR5−/− mice is coupled with an enhanced adaptive immune response in fungal infection. J Immunol. 2011;186:5949–55.

    Article  CAS  PubMed  Google Scholar 

  26. Mencarelli A, Cipriani S, Francisci D, Santucci L, Baldelli F, Distrutti E, et al. Highly specific blockade of CCR5 inhibits leukocyte trafficking and reduces mucosal inflammation in murine colitis. Sci Rep. 2016;6:30802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Matsuzaki K, Hokari R, Kato S, Tsuzuki Y, Tanaka H, Kurihara C, et al. Differential expression of CCR5 and CRTH2 on infiltrated cells in colonic mucosa of patients with ulcerative colitis. J Gastroenterol Hepatol. 2003;18:1081–8.

    Article  CAS  PubMed  Google Scholar 

  28. Mo R, Chen J, Han Y, Bueno-Cannizares C, Misek DE, Lescure PA, et al. T cell chemokine receptor expression in aging. J Immunol. 2003;170:895–904.

    Article  CAS  PubMed  Google Scholar 

  29. Ergen AV, Boles NC, Goodell MA. Rantes/Ccl5 influences hematopoietic stem cell subtypes and causes myeloid skewing. Blood. 2012;119:2500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frisch BJ, Hoffman CM, Latchney SE, LaMere MW, Myers J, Ashton J, et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight. 2019;4:e124213.

  31. Lykens JE, Terrell CE, Zoller EE, Divanovic S, Trompette A, Karp CL, et al. Mice with a selective impairment of IFN-gamma signaling in macrophage lineage cells demonstrate the critical role of IFN-gamma-activated macrophages for the control of protozoan parasitic infections in vivo. J Immunol. 2010;184:877–85.

    Article  CAS  PubMed  Google Scholar 

  32. Dufour C, Corcione A, Svahn J, Haupt R, Poggi V, Beka’ssy AN, et al. TNF-alpha and IFN-gamma are overexpressed in the bone marrow of Fanconi anemia patients and TNF-alpha suppresses erythropoiesis in vitro. Blood. 2003;102:2053–9.

    Article  CAS  PubMed  Google Scholar 

  33. Solomou EE, Keyvanfar K, Young NS. T-bet, a Th1 transcription factor, is up-regulated in T cells from patients with aplastic anemia. Blood. 2006;107:3983–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pakianathan DR, Kuta EG, Artis DR, Skelton NJ, Hebert CA. Distinct but overlapping epitopes for the interaction of a CC-chemokine with CCR1, CCR3 and CCR5. Biochemistry. 1997;36:9642–8.

    Article  CAS  PubMed  Google Scholar 

  35. Tyner JW, Uchida O, Kajiwara N, Kim EY, Patel AC, O’Sullivan MP, et al. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat Med. 2005;11:1180–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Welniak LA, Wang Z, Sun K, Kuziel W, Anver MR, Blazar BR, et al. An absence of CCR5 on donor cells results in acceleration of acute graft-vs-host disease. Exp Hematol. 2004;32:318–24.

    Article  CAS  PubMed  Google Scholar 

  37. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature. 2010;465:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McCabe A, Zhang Y, Thai V, Jones M, Jordan MB, MacNamara KC. Macrophage-lineage cells negatively regulate the hematopoietic stem cell pool in response to interferon gamma at steady state and during infection. Stem Cells. 2015;33:2294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Selleri C, Maciejewski JP, Sato T, Young NS. Interferon-gamma constitutively expressed in the stromal microenvironment of human marrow cultures mediates potent hematopoietic inhibition. Blood. 1996;87:4149–57.

    Article  CAS  PubMed  Google Scholar 

  40. Matatall KA, Shen CC, Challen GA, King KY. Type II interferon promotes differentiation of myeloid-biased hematopoietic stem cells. Stem Cells. 2014;32:3023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schurch CM, Riether C, Ochsenbein AF. Cytotoxic CD8(+) T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell. 2014;; 14:460–72.

    Article  PubMed  CAS  Google Scholar 

  42. Goedhart M, Cornelissen AS, Kuijk C, Geerman S, Kleijer M, van Buul JD, et al. Interferon-gamma impairs maintenance and alters hematopoietic support of bone marrow mesenchymal stromal cells. Stem Cells Dev. 2018;27:579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, et al. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell. 2015;17:422–34.

    Article  CAS  PubMed  Google Scholar 

  44. Gekas C, Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood. 2013;121:4463–72.

    Article  CAS  PubMed  Google Scholar 

  45. Piryani SO, Kam AYF, Vu UT, Chao NJ, Doan PL. CCR5 signaling promotes murine and human hematopoietic regeneration following ionizing radiation. Stem Cell Rep. 2019;13:76–90.

    Article  CAS  Google Scholar 

  46. Machlus KR, Johnson KE, Kulenthirarajan R, Forward JA, Tippy MD, Soussou TS, et al. CCL5 derived from platelets increases megakaryocyte proplatelet formation. Blood. 2016;127:921–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song A, Chen YF, Thamatrakoln K, Storm TA, Krensky AM. RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity. 1999;10:93–103.

    Article  PubMed  Google Scholar 

  48. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP, Su L, et al. Critical role for CCR5 in the function of donor CD4+ CD25+ regulatory T cells during acute graft-versus-host disease. Blood. 2005;106:3300–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Young NS, Bacigalupo A, Marsh JC. Aplastic anemia: pathophysiology and treatment. Biol Blood Marrow Transplant. 2010;16:S119–125.

    Article  PubMed  Google Scholar 

  50. Young NS, Brown KE. Parvovirus B19. N Engl J Med. 2004;350:586–97.

    Article  CAS  PubMed  Google Scholar 

  51. Chisaka H, Morita E, Yaegashi N, Sugamura K. Parvovirus B19 and the pathogenesis of anaemia. Rev Med Virol. 2003;13:347–59.

    Article  CAS  PubMed  Google Scholar 

  52. Scheinberg P, Fischer SH, Li L, Nunez O, Wu CO, Sloand EM, et al. Distinct EBV and CMV reactivation patterns following antibody-based immunosuppressive regimens in patients with severe aplastic anemia. Blood. 2007;109:3219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Prod’homme V, Tomasec P, Cunningham C, Lemberg MK, Stanton RJ, McSharry BP, et al. Human cytomegalovirus UL40 signal peptide regulates cell surface expression of the NK cell ligands HLA-E and gpUL18. J Immunol. 2012;188:2794–804.

    Article  PubMed  Google Scholar 

  54. McSharry BP, Avdic S, Slobedman B. Human cytomegalovirus encoded homologs of cytokines, chemokines and their receptors: roles in immunomodulation. Viruses. 2012;4:2448–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ma W, Feng L, Zhang S, Zhang H, Zhang X, Qi X, et al. Induction of chemokine (C-C motif) ligand 5 by Epstein-Barr virus infection enhances tumor angiogenesis in nasopharyngeal carcinoma. Cancer Sci. 2018;109:1710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nozza S, Galli L, Bigoloni A, Gianotti N, Spagnuolo V, Carbone A, et al. Four-year outcome of a PI and NRTI-sparing salvage regimen: maraviroc, raltegravir, etravirine. N Microbiol. 2014;37:145–51.

    CAS  Google Scholar 

  57. Lin S, Sun L, Lyu X, Ai X, Du D, Su N, et al. Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop. Oncotarget. 2017;8:110426–43.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Halvorsen EC, Hamilton MJ, Young A, Wadsworth BJ, LePard NE, Lee HN, et al. Maraviroc decreases CCL8-mediated migration of CCR5(+) regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology. 2016;5:e1150398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Murai M, Yoneyama H, Harada A, Yi Z, Vestergaard C, Guo B, et al. Active participation of CCR5(+)CD8(+) T lymphocytes in the pathogenesis of liver injury in graft-versus-host disease. J Clin Investig. 1999;104:49–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reshef R, Luger SM, Hexner EO, Loren AW, Frey NV, Nasta SD, et al. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. N Engl J Med. 2012;367:135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Angelica Costello and Hui Jin Jo for technical assistance. This work was supported by a Aplastic Anemia and MDS International Foundation grant to KCM, BM160071 and BM190079 (DOD-BMFRP-IDA) to KCM and R01 AG046293 to LMC.

Author information

Authors and Affiliations

Authors

Contributions

ANS designed and performed experiments, analyzed data, and wrote the paper, AM and JNPS designed and performed experiments, and analyzed data, LMC designed experiments and analyzed data, and KCM conceived of the project, designed experiments, analyzed data, and wrote the paper.

Corresponding author

Correspondence to Katherine C. MacNamara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seyfried, A.N., McCabe, A., Smith, J.N.P. et al. CCR5 maintains macrophages in the bone marrow and drives hematopoietic failure in a mouse model of severe aplastic anemia. Leukemia 35, 3139–3151 (2021). https://doi.org/10.1038/s41375-021-01219-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01219-z

Search

Quick links