Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma


Chimeric antigen receptor (CAR) T-cell therapy remains limited to select centers that can carefully monitor adverse events. To broaden use of CAR T cells in community clinics and in a frontline setting, we developed a novel CD8+ CAR T-cell product, Descartes-08, with predictable pharmacokinetics for treatment of multiple myeloma. Descartes-08 is engineered by mRNA transfection to express anti-BCMA CAR for a defined length of time. Descartes-08 expresses anti-BCMA CAR for 1 week, limiting risk of uncontrolled proliferation; produce inflammatory cytokines in response to myeloma target cells; and are highly cytolytic against myeloma cells regardless of the presence of myeloma-protecting bone marrow stromal cells, exogenous a proliferation-inducing ligand, or drug resistance including IMiDs. The magnitude of cytolysis correlates with anti-BCMA CAR expression duration, indicating a temporal limit in activity. In the mouse model of aggressive disseminated human myeloma, Descartes-08 induces BCMA CAR-specific myeloma growth inhibition and significantly prolongs host survival (p < 0.0001). These preclinical data, coupled with an ongoing clinical trial of Descartes-08 in relapsed/refractory myeloma (NCT03448978) showing preliminary durable responses and a favorable therapeutic index, have provided the framework for a recently initiated trial of an optimized/humanized version of Descartes-08 (i.e., Descartes-11) in newly diagnosed myeloma patients with residual disease after induction therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Descartes-08 cells are highly viable and significantly express BCMA CAR following mRNA transfection and freezing-thawing procedure.
Fig. 2: Descartes-08 cells induced potent cytolytic function to deplete MM cells in the ex vivo co-cultures.
Fig. 3: Descartes-08 T cells showed transient upregulation in T-cell activation and checkpoint proteins in a BCMA-selective manner.
Fig. 4: IMiDs-resistant MM cell lines were highly susceptible to Descartes-08 cells.
Fig. 5: Descartes-08 significantly induced cytolysis of primary MM patient samples.
Fig. 6: Descartes-08 cells with TCR knockout significantly blocked disseminated MM1S tumor growth in NSG mice, leading to prolonged host survival.
Fig. 7: Biomarkers of disease burden in a patient treated with Descartes-08.


  1. 1.

    Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Kumar SK, Anderson KC. Immune therapies in multiple myeloma. Clin Cancer Res. 2016;22:5453–60.

    CAS  PubMed  Google Scholar 

  3. 3.

    Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 2017;14:100–13.

    CAS  PubMed  Google Scholar 

  4. 4.

    Zhang L, Tai YT, Ho M, Xing L, Chauhan D, Gang A, et al. Regulatory B cell-myeloma cell interaction confers immunosuppression and promotes their survival in the bone marrow milieu. Blood Cancer J. 2017;7:e547.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Tai YT, Cho SF, Anderson KC. Osteoclast immunosuppressive effects in multiple myeloma: role of programmed cell death ligand 1. Front Immunol. 2018;9:1822.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ghobrial IM, Detappe A, Anderson KC, Steensma DP. The bone-marrow niche in MDS and MGUS: implications for AML and MM. Nat Rev Clin Oncol. 2018;15:219–33.

    PubMed  Google Scholar 

  7. 7.

    Maura F, Bolli N, Angelopoulos N, Dawson KJ, Leongamornlert D, Martincorena I, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nat Commun. 2019;10:3835.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yan Y, Mao X, Liu J, Fan H, Du C, Li Z, et al. The impact of response kinetics for multiple myeloma in the era of novel agents. Blood Adv. 2019;3:2895–904.

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    An G, Yan Y, Xu Y, Mao X, Liu J, Fan H, et al. Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. Leukemia. 2020;34:578–88.

    CAS  PubMed  Google Scholar 

  10. 10.

    Chim CS, Kumar SK, Orlowski RZ, Cook G, Richardson PG, Gertz MA, et al. Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond. Leukemia. 2018;32:252–62.

    CAS  PubMed  Google Scholar 

  11. 11.

    Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014;371:1507–17.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46.

    CAS  PubMed  Google Scholar 

  14. 14.

    Park JH, Riviere I, Gonen M, Wang X, Senechal B, Curran KJ, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018;378:449–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    CAS  PubMed  Google Scholar 

  16. 16.

    June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–65.

    CAS  PubMed  Google Scholar 

  17. 17.

    June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379:64–73.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tai YT, Li XF, Breitkreutz I, Song W, Neri P, Catley L, et al. Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer Res. 2006;66:6675–82.

    CAS  PubMed  Google Scholar 

  19. 19.

    Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang S, et al. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19:2048–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, et al. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123:3128–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Tai YT, Anderson KC. Targeting B-cell maturation antigen in multiple myeloma. Immunotherapy. 2015;7:1187–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lee L, Bounds D, Paterson J, Herledan G, Sully K, Seestaller-Wehr LM, et al. Evaluation of B cell maturation antigen as a target for antibody drug conjugate mediated cytotoxicity in multiple myeloma. Br J Haematol. 2016;174:911–22.

    CAS  PubMed  Google Scholar 

  23. 23.

    Cho SF, Anderson KC, Tai YT. Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy. Front Immunol. 2018;9:1821.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Tai YT, Anderson KC. B cell maturation antigen (BCMA)-based immunotherapy for multiple myeloma. Expert Opin Biol Ther. 2019;19:1143–56.

    CAS  PubMed  Google Scholar 

  25. 25.

    Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M, Lam N, et al. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J Clin Oncol. 2018;36:2267–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF, Lancaster E, et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J Clin Invest. 2019;129:2210–21.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S, Madduri D, et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N Engl J Med. 2019;380:1726–37.

    CAS  PubMed  Google Scholar 

  28. 28.

    Cohen AD, Garfall AL, Dogan A, Lacey SF, Martin C, Lendvai N, et al. Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies. Blood Adv. 2019;3:2487–90.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Barrett DM, Liu X, Jiang S, June CH, Grupp SA, Zhao Y. Regimen-specific effects of RNA-modified chimeric antigen receptor T cells in mice with advanced leukemia. Hum Gene Ther. 2013;24:717–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Tasian SK, Kenderian SS, Shen F, Ruella M, Shestova O, Kozlowski M, et al. Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood. 2017;129:2395–407.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Rozemuller H, van der Spek E, Bogers-Boer LH, Zwart MC, Verweij V, Emmelot M, et al. A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect. Haematologica. 2008;93:1049–57.

    PubMed  Google Scholar 

  32. 32.

    Feng X, Zhang L, Acharya C, An G, Wen K, Qiu L, et al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin Cancer Res. 2017;23:4290–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Tai YT, Lin L, Xing L, Cho SF, Yu T, Acharya C, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: therapeutic implications. Leukemia. 2019;33:426–38.

    CAS  PubMed  Google Scholar 

  34. 34.

    Tai YT, Horton HM, Kong SY, Pong E, Chen H, Cemerski S, et al. Potent in vitro and in vivo activity of an Fc-engineered humanized anti-HM1.24 antibody against multiple myeloma via augmented effector function. Blood. 2012;119:2074–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Tai YT, Acharya C, An G, Moschetta M, Zhong MY, Feng X, et al. APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment. Blood. 2016;127:3225–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Xing L, Lin L, Yu T, Li Y, Cho SF, Liu J, et al. A novel BCMA PBD-ADC with ATM/ATR/WEE1 inhibitors or bortezomib induce synergistic lethality in multiple myeloma. Leukemia. 2020. Online ahead of print.

  37. 37.

    Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, et al. Engineered tumor-targeted T cells mediate enhanced anti-tumor efficacy both directly and through activation of the endogenous immune system. Cell Rep. 2018;23:2130–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res. 2018;6:4.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130:2295–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    An G, Acharya C, Feng X, Wen K, Zhong M, Zhang L, et al. Osteoclasts promote immune suppressive microenvironment in multiple myeloma: therapeutic implication. Blood. 2016;128:1590–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Schmidts A, Ormhoj M, Choi BD, Taylor AO, Bouffard AA, Scarfo I, et al. Rational design of a trimeric APRIL-based CAR-binding domain enables efficient targeting of multiple myeloma. Blood Adv. 2019;3:3248–60.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Tai YT, Landesman Y, Acharya C, Calle Y, Zhong MY, Cea M, et al. CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: molecular mechanisms and therapeutic implications. Leukemia. 2014;28:155–65.

    CAS  PubMed  Google Scholar 

  43. 43.

    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.

    CAS  PubMed  Google Scholar 

  44. 44.

    D’Agostino M, Raje N. Anti-BCMA CAR T-cell therapy in multiple myeloma: can we do better? Leukemia. 2020;34:21–34.

    PubMed  Google Scholar 

  45. 45.

    Cho SF, Lin L, Xing L, Li Y, Yu T, Anderson KC, et al. BCMA-targeting therapy: driving a new era of immunotherapy in multiple myeloma. Cancers. 2020;12:1473.

    Google Scholar 

  46. 46.

    Xu J, Chen LJ, Yang SS, Sun Y, Wu W, Liu YF, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc Natl Acad Sci USA. 2019;116:9543–51.

    CAS  PubMed  Google Scholar 

  47. 47.

    Teachey DT, Lacey SF, Shaw PA, Melenhorst JJ, Maude SL, Frey N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov. 2016;6:664–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sadelain M. CD19 CAR T Cells. Cell. 2017;171:1471.

    CAS  PubMed  Google Scholar 

  49. 49.

    Foster JB, Barrett DM, Kariko K. The emerging role of in vitro-transcribed mRNA in adoptive T cell immunotherapy. Mol Ther. 2019;27:747–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Wiesinger M, Marz J, Kummer M, Schuler G, Dorrie J, Schuler-Thurner B, et al. Clinical-scale production of CAR-T cells for the treatment of melanoma patients by mRNA transfection of a CSPG4-specific CAR under full GMP compliance. Cancers. 2019;11:1198.

    CAS  PubMed Central  Google Scholar 

  51. 51.

    Foster JB, Choudhari N, Perazzelli J, Storm J, Hofmann TJ, Jain P, et al. Purification of mRNA encoding chimeric antigen receptor is critical for generation of a robust T-cell response. Hum Gene Ther. 2019;30:168–78.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The authors acknowledge the technical assistance from the flow cytometry facility at Dana-Farber Cancer Institute (DFCI). We thank Dr. Jiye Liu, Dr. Wenjuan Yang, and all other lab members, as well as the clinical research coordinators at the Jerome Lipper Multiple Myeloma Center and the LeBow Institute for Myeloma Therapeutics of the DFCI, for support and help in providing primary tumor specimens for this study.


This work was supported in part by grants from the National Institutes of Health Specialized Programs of Research Excellence (SPORE) P50 CA100707, P01CA155258, RO1 CA 207237, and RO1 CA 050947. This work was supported in part by Dr Miriam and Sheldon G. Adelson Medical Research Foundation and the Riney Family Multiple Myeloma Initiative. Dr. Kenneth C. Anderson is an American Cancer Society Clinical Research Professor.

Author information




Conception and design: Y-TT and KCA. Development of methodology: LL, S-FC, LX, and YL. Acquisition of data (provided reagents, facilities, etc.): LL, S-FC, LX, TY, YL, KW, and PAH. Reagents and materials: MK, YZ, and CAS. Animal work and in vivo data analysis: Y-TT, MK, YZ, and CAS. Analysis and interpretation of data (statistical analysis, biostatistics analysis): LL, S-FC, LX, TY, YL, KW, PAH, and HC. Provided and managed patients: NM and KCA. Writing, review, and/or revision of the manuscript: KCA and Y-TT. Study supervision: KCA and Y-TT. All authors critically reviewed and approved this paper.

Corresponding authors

Correspondence to Kenneth C. Anderson or Yu-Tzu Tai.

Ethics declarations

Conflict of interest

MK, YZ, and CAS are employees of and hold stock interest in Cartesian Therapeutics. NM serves on advisory boards to Millennium-Takeda, Celgene, and Novartis. KCA serves on advisory boards Celgene, Millennium-Takeda, Bristol-Myers Squibb, Gilead Sciences, Janssen, and Sanofi-Aventis and is a Scientific founder of OncoPep and C4 Therapeutics. All other authors declare no competing financial interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Cho, S., Xing, L. et al. Preclinical evaluation of CD8+ anti-BCMA mRNA CAR T cells for treatment of multiple myeloma. Leukemia (2020).

Download citation