Mechanisms of resistance

Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms

Abstract

FLT3-ITD mutations occur in 20–30% of AML patients and are associated with aggressive disease. Patients with relapsed FLT3-mutated disease respond well to 2nd generation FLT3 TKIs but inevitably relapse within a short timeframe. In this setting, until overt relapse occurs, the bone marrow microenvironment facilitates leukemia cell survival despite continued on-target inhibition. We demonstrate that human bone marrow derived conditioned medium (CM) protects FLT3-ITD+ AML cells from the 2nd generation FLT3 TKI quizartinib and activates STAT3 and STAT5 in leukemia cells. Extrinsic activation of STAT5 by CM is the primary mediator of leukemia cell resistance to FLT3 inhibition. Combination treatment with quizartinib and dasatinib abolishes STAT5 activation and significantly reduces the IC50 of quizartinib in FLT3-ITD+ AML cells cultured in CM. We demonstrate that CM protects FLT3-ITD+ AML cells from the inhibitory effects of quizartinib on glycolysis and that this is partially reversed by treating cells with the combination of quizartinib and dasatinib. Using a doxycycline-inducible STAT5 knockdown in the FLT3-ITD+ MOLM-13 cell line, we show that dasatinib-mediated suppression of leukemia cell glycolytic activity is STAT5-independent and provide a preclinical rationale for combination treatment with quizartinib and dasatinib in FLT3-ITD+ AML.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Culture in HS-5 CM protects FLT3-ITD+ AML cells from quizartinib.
Fig. 2: CM activates STAT3 and STAT5 in AML cells and knockdown of STAT5 is associated with impaired cell growth in FLT3-ITD+ AML.
Fig. 3: The combination of dasatinib and quizartinib decreases STAT5 activation in CM and overcomes stroma-based resistance to FLT3 TKI.
Fig. 4: The combination of dasatinib and quizartinib suppresses stroma-enhanced glycolysis in a STAT5-independent manner in FLT3-ITD+ AML.

References

  1. 1.

    Small D, Levenstein M, Kim E, Carow C, Amin S, Rockwell P, et al. STK-1, the human homolog of Flk-2/Flt-3, is selectively expressed in CD34+ human bone marrow cells and is involved in the proliferation of early progenitor/stem cells. Proc Natl Acad Sci USA. 1994;91:459–63.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Beaudin AE, Boyer SW, Forsberg EC. Flk2/Flt3 promotes both myeloid and lymphoid development by expanding non-self-renewing multipotent hematopoietic progenitor cells. Exp Hematol. 2014;42:218–29.e4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Dehmel U, Quentmeier H, Drexler HG. Effects of FLT3 ligand on human leukemia cells. II. Agonistic and antagonistic effects of other cytokines. Leukemia. 1996;10:271–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hannum C, Culpepper J, Campbell D, Mcclanahan T, Zurawski S, Bazan JF, et al. Ligand for Flt3 Flk2 receptor tyrosine kinase regulates growth of hematopoietic stem-cells and is encoded by variant Rnas. Nature. 1994;368:643–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Drexler HG. Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia. 1996;10:588–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Smith CC, Wang Q, Chin CS, Salerno S, Damon LE, Levis MJ, et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature. 2012;485:260–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999;93:3074–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kiyoi H, Ohno R, Ueda R, Saito H, Naoe T. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002;21:2555–63.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Choudhary C, Brandts C, Schwable J, Tickenbrock L, Sargin B, Ueker A, et al. Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood. 2007;110:370–4.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Stone RM, Mandrekar SJ, Sanford BL, Laumann K, Geyer S, Bloomfield CD, et al. Midostaurin plus Chemotherapy for acute myeloid leukemia with a FLT3 mutation. N Engl J Med. 2017;377:454–64.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, et al. Phase IIB trial of oral midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010;28:4339–45.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Short NJ, Kantarjian H, Ravandi F, Daver N. Emerging treatment paradigms with FLT3 inhibitors in acute myeloid leukemia. Ther Adv Hematol. 2019;10:2040620719827310.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Cortes JE, Khaled S, Martinelli G, Perl AE, Ganguly S, Russell N, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019;20:984–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Perl AE, Martinelli G, Cortes JE, Neubauer A, Berman E, Paolini S, et al. Gilteritinib or chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N Engl J Med. 2019;381:1728–40.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Alvarado Y, Kantarjian HM, Luthra R, Ravandi F, Borthakur G, Garcia-Manero G, et al. Treatment with FLT3 inhibitor in patients with FLT3-mutated acute myeloid leukemia is associated with development of secondary FLT3-tyrosine kinase domain mutations. Cancer. 2014;120:2142–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M. FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood. 2010;115:1425–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Antar AI, Otrock ZK, Jabbour E, Mohty M, Bazarbachi A. FLT3 inhibitors in acute myeloid leukemia: ten frequently asked questions. Leukemia. 2020;34:682–96.

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Borthakur G, Kantarjian H, Ravandi F, Zhang W, Konopleva M, Wright JJ, et al. Phase I study of sorafenib in patients with refractory or relapsed acute leukemias. Haematologica. 2011;96:62–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Weisberg E, Liu Q, Nelson E, Kung AL, Christie AL, Bronson R, et al. Using combination therapy to override stromal-mediated chemoresistance in mutant FLT3-positive AML: synergism between FLT3 inhibitors, dasatinib/multi-targeted inhibitors and JAK inhibitors. Leukemia. 2012;26:2233–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Berger A, Hoelbl-Kovacic A, Bourgeais J, Hoefling L, Warsch W, Grundschober E, et al. PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia. 2014;28:629–41.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Eiring AM, Kraft IL, Page BD, O’Hare T, Gunning PT, Deininger MW. STAT3 as a mediator of BCR-ABL1-independent resistance in chronic myeloid leukemia. Leuk Suppl. 2014;3(Suppl 1):S5–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O’Hare T, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia. 2012;26:1140–3.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Quentmeier H, Reinhardt J, Zaborski M, Drexler HG. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. 2003;17:120–4.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Wu H, Hu C, Wang A, Weisberg EL, Wang W, Chen C, et al. Ibrutinib selectively targets FLT3-ITD in mutant FLT3-positive AML. Leukemia. 2016;30:754–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Traer E, Martinez J, Javidi-Sharifi N, Agarwal A, Dunlap J, English I, et al. FGF2 from marrow microenvironment promotes resistance to FLT3 Inhibitors in acute myeloid leukemia. Cancer Res. 2016;76:6471–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Weisberg E, Liu Q, Zhang X, Nelson E, Sattler M, Liu F, et al. Selective Akt inhibitors synergize with tyrosine kinase inhibitors and effectively override stroma-associated cytoprotection of mutant FLT3-positive AML cells. PLoS ONE. 2013;8:e56473.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Weisberg EL, Puissant A, Stone R, Sattler M, Buhrlage SJ, Yang J, et al. Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget. 2017;8:52026–44.

    PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    Cook AM, Li L, Ho Y, Lin A, Li L, Stein A, et al. Role of altered growth factor receptor-mediated JAK2 signaling in growth and maintenance of human acute myeloid leukemia stem cells. Blood. 2014;123:2826–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Fang Y, Zhong L, Lin M, Zhou X, Jing H, Ying M, et al. MEK/ERK dependent activation of STAT1 mediates dasatinib-induced differentiation of acute myeloid leukemia. PLoS ONE. 2013;8:e66915.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Gallipoli P, Giotopoulos G, Tzelepis K, Costa ASH, Vohra S, Medina-Perez P, et al. Glutaminolysis is a metabolic dependency in FLT3(ITD) acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition. Blood. 2018;131:1639–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Fletcher L, Joshi S, Traer E. Profile of quizartinib for the treatment of adult patients with relapsed/refractory FLT3-ITD-positive acute myeloid leukemia: evidence to date. Cancer Manag Res. 2020;2020:151–63.

    Article  Google Scholar 

  32. 32.

    Sung PJ, Sugita M, Koblish H, Perl AE, Carroll M. Hematopoietic cytokines mediate resistance to targeted therapy in FLT3-ITD acute myeloid leukemia. Blood Adv. 2019;3:1061–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Dumas PY, Naudin C, Martin-Lanneree S, Izac B, Casetti L, Mansier O, et al. Hematopoietic niche drives FLT3-ITD acute myeloid leukemia resistance to quizartinib via STAT5-and hypoxia-dependent upregulation of AXL. Haematologica. 2019;104:2017–27.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7:3169–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D, et al. Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia. 2015;29:586–97.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Kuepper MK, Butow M, Herrmann O, Ziemons J, Chatain N, Maurer A, et al. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia. 2019;33:1964–77.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Pricola KL, Kuhn NZ, Haleem-Smith H, Song Y, Tuan RS. Interleukin-6 maintains bone marrow-derived mesenchymal stem cell stemness by an ERK1/2-dependent mechanism. J Cell Biochem. 2009;108:577–88.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Manshouri T, Estrov Z, Quintas-Cardama A, Burger J, Zhang Y, Livun A, et al. Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. Cancer Res. 2011;71:3831–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Gordon PM, Dias S, Williams DA. Cytokines secreted by bone marrow stromal cells protect c-KIT mutant AML cells from c-KIT inhibitor-induced apoptosis. Leukemia. 2014;28:2257–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Park IK, Mundy-Bosse B, Whitman SP, Zhang X, Warner SL, Bearss DJ, et al. Receptor tyrosine kinase Axl is required for resistance of leukemic cells to FLT3-targeted therapy in acute myeloid leukemia. Leukemia. 2015;29:2382–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Furukawa M, Ohkawara H, Ogawa K, Ikeda K, Ueda K, Shichishima-Nakamura A, et al. Autocrine and paracrine interactions between multiple myeloma cells and bone marrow stromal cells by growth arrest-specific gene 6 cross-talk with interleukin-6. J Biol Chem. 2017;292:4280–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Ghosh AK, Secreto C, Boysen J, Sassoon T, Shanafelt TD, Mukhopadhyay D, et al. The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood. 2011;117:1928–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Meyer AS, Miller MA, Gertler FB, Lauffenburger DA. The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal. 2013;6:ra66.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Vouri M, Croucher DR, Kennedy SP, An Q, Pilkington GJ, Hafizi S. Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis. 2016;5:e266.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Goruppi S, Ruaro E, Varnum B, Schneider C. Requirement of phosphatidylinositol 3-kinase-dependent pathway and Src for Gas6-Axl mitogenic and survival activities in NIH 3T3 fibroblasts. Mol Cell Biol. 1997;17:4442–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer. 2017;116:415–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Davis MI, Hunt JP, Herrgard S, Ciceri P, Wodicka LM, Pallares G, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29:1046–51.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kitagawa D, Yokota K, Gouda M, Narumi Y, Ohmoto H, Nishiwaki E, et al. Activity-based kinase profiling of approved tyrosine kinase inhibitors. Genes Cells. 2013;18:110–22.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Rankin EB, Fuh KC, Castellini L, Viswanathan K, Finger EC, Diep AN, et al. Direct regulation of GAS6/AXL signaling by HIF promotes renal metastasis through SRC and MET. Proc Natl Acad Sci USA. 2014;111:13373–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Jin Y, Cai Q, Shenoy AK, Lim S, Zhang Y, Charles S, et al. Src drives the Warburg effect and therapy resistance by inactivating pyruvate dehydrogenase through tyrosine-289 phosphorylation. Oncotarget. 2016;7:25113–24.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Zhang J, Wang S, Jiang B, Huang L, Ji Z, Li X, et al. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat Commun. 2017;8:13732.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    DeNicola GM, Cantley LC. Cancer’s fuel choice: New Flavors for a picky eater. Mol Cell. 2015;60:514–23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797–806.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Banerjee M, Cui X, Li Z, Yu H, Cai L, Jia X, et al. Na/K-ATPase Y260 phosphorylation-mediated Src regulation in control of aerobic glycolysis and tumor growth. Sci Rep. 2018;8:12322.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Cheng LC, Chen YL, Cheng AN, Lee AY, Cho CY, Huang JS, et al. AXL phosphorylates and up-regulates TNS2 and its implications in IRS-1-associated metabolism in cancer cells. J Biomed Sci. 2018;25:80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7:380–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 2016;128:253–64.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Jain N, Keating M, Thompson P, Ferrajoli A, Burger J, Borthakur G, et al. Ibrutinib and venetoclax for First-line treatment of CLL. N Engl J Med. 2019;380:2095–103.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Luskin M, Murakami MA, Stevenson KE, Wadleigh M, McMasters M, Winter P, et al. A phase I Study of Asciminib (ABL001) in combination with dasatinib and prednisone for untreated BCR-ABL1-positive ALL in older adults. Blood. 2019;134(Suppl_1):3879.

    Article  Google Scholar 

  60. 60.

    DeAngelo DJ, Mauro MJ, Kim D-W, Cortes J, Réa D, Hughes TP, et al. Combination of asciminib + nilotinib or asciminib + dasatinib in previously treated chronic myeloid leukemia (CML) patients: phase 1 study results. Clin Lymphoma Myeloma Leuk. 2019;19:S290–1.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Cancer Institute (NCI) at the National Institutes of health (NIH) through grant R21CA20593601 (MWD), the V Foundation for Cancer Research Translational Research Grant T2017–008 (MWD), NIH grant R01CA178397 (MWD and TOH), and the American Society of Hematology Research Training Award for Fellows (ABP). DY is supported by the International Award from the Lady Tata Memorial Trust. AME is supported by NIH grant 1K22CA216008. We thank the Metabolic Phenotyping Core Facility at the University of Utah for assistance with Seahorse experiments. This work was funded in part by the University of Utah Flow Cytometry Core Facility and the NCI through award 5P30CA042014–24 awarded to the Huntsman Cancer Institute and the National Center for Research Resources of the NIH award 1S10RR026802–01.

Author information

Affiliations

Authors

Contributions

ABP conceptualized the project, designed and performed experiments, analyzed data, interpreted results, and wrote the paper. ADP assisted ABP with phospho-flow cytometry studies and genotyping in cell lines; DY and AME provided technical support to ABP with Seahorse assays and virus production; OA assisted ABP with figure design; TWK and JAS determined FLT3-ITD variant allele frequency in patient samples. SKT, TJK, and PJS provided patient samples. TOH and MWD conceptualized the project, supervised ABP with experimental design, result interpretation, and paper writing. All authors were involved in project discussion and data interpretation.

Corresponding author

Correspondence to Michael W. Deininger.

Ethics declarations

Conflict of interest

MWD reports research funding from and is a paid advisory board member and/or consultant for the following companies: Pfizer Inc, TRM Blueprint, Fusion Pharma, Takeda, Ascentage Pharma, Humana, Adelphi, Medscape, Novartis, Incyte and Sangamo. Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patel, A.B., Pomicter, A.D., Yan, D. et al. Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia (2020). https://doi.org/10.1038/s41375-020-0858-1

Download citation