Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell transplantation

Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent antileukemic activity

Abstract

Acute graft-versus-host disease (aGVHD) and tumor relapse remain major complications after allogeneic hematopoietic stem cell transplantation. Alloreactive T cells and cancer cells share a similar metabolic phenotype to meet the bioenergetic demands necessary for cellular proliferation and effector functions. Nicotinamide adenine dinucleotide (NAD) is an essential co-factor in energy metabolism and is constantly replenished by nicotinamide phosphoribosyl-transferase (Nampt), the rate-limiting enzyme in the NAD salvage pathway. Here we show, that Nampt blockage strongly ameliorates aGVHD and limits leukemic expansion. Nampt was highly elevated in serum of patients with gastrointestinal GVHD and was particularly abundant in human and mouse intestinal T cells. Therapeutic application of the Nampt small-molecule inhibitor, Fk866, strongly attenuated experimental GVHD and caused NAD depletion in T-cell subsets, which displayed differential susceptibility to NAD shortage. Fk866 robustly inhibited expansion of alloreactive but not memory T cells and promoted FoxP3-mediated lineage stability in regulatory T cells. Furthermore, Fk866 strongly reduced the tumor burden in mouse leukemia and graft-versus-leukemia models. Ex vivo studies using lymphocytes from GVHD patients demonstrated potent antiproliferative properties of Fk866, suggesting potential clinical utility. Thus, targeting NAD immunometabolism represents a novel approach to selectively inhibit alloreactive T cells during aGVHD with additional antileukemic efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NAMPT is elevated in patients with acute GI–GVHD and is highly abundant in human and mouse intestinal T cells.
Fig. 2: Fk866-mediated Nampt inhibition mitigates acute GVHD in major mismatch models.
Fig. 3: Fk866 targets effector T cells and promotes regulatory T cells during acute GVHD.
Fig. 4: NAD depletion differentially impacts T-cell subsets.
Fig. 5: Tumor cells are highly susceptible to Fk866 in experimental leukemia and GVL models.
Fig. 6: Fk866 suppresses lymphocyte proliferation from healthy and GVHD patients and promotes iTreg.

Similar content being viewed by others

References

  1. Olenchock BA, Rathmell JC, Heiden MGV. Biochemical underpinnings of immune cell metabolic phenotypes. Immunity 2017;46:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52.

    Article  CAS  PubMed  Google Scholar 

  3. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  CAS  Google Scholar 

  4. Nikiforov A, Kulikova V, Ziegler M. The human NAD metabolome: functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol. 2015;50:284–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michan S, Sinclair D. Sirtuins in mammals: insights into their biological function. Biochem J. 2007;404:1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat Struct Mol Biol. 2006;13:661–2.

    Article  CAS  PubMed  Google Scholar 

  7. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58.

    Article  CAS  PubMed  Google Scholar 

  8. Li Y, Zhang Y, Dorweiler B, Cui D, Wang T, Woo CW, et al. Extracellular Nampt promotes macrophage survival via a nonenzymatic interleukin-6/STAT3 signaling mechanism. J Biol Chem. 2008;283:34833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jieyu H, Chao T, Mengjun L, Shalong W, Xiaomei G, Jianfeng L, et al. Nampt/Visfatin/PBEF: a functionally multi-faceted protein with a pivotal role in malignant tumors. Curr Pharm Des. 2012;18:6123–32.

    Article  PubMed  Google Scholar 

  10. Moschen AR, Gerner RR, Tilg H. Pre-B cell colony enhancing factor/NAMPT/visfatin in inflammation and obesity-related disorders. Curr Pharm Des. 2010;16:1913–20.

    Article  CAS  PubMed  Google Scholar 

  11. Garten A, Petzold S, Korner A, Imai S, Kiess W. Nampt: linking NAD biology, metabolism and cancer. Trends Endocrinol Metab. 2009;20:130–8.

    Article  CAS  PubMed  Google Scholar 

  12. Hasmann M, Schemainda I. FK866, a highly specific noncompetitive inhibitor of nicotinamide phosphoribosyltransferase, represents a novel mechanism for induction of tumor cell apoptosis. Cancer Res. 2003;63:7436–42.

    CAS  PubMed  Google Scholar 

  13. Gerner RR, Klepsch V, Macheiner S, Arnhard K, Adolph TE, Grander C, et al. NAD metabolism fuels human and mouse intestinal inflammation. Gut. 2018;67:1813–23.

  14. Nahimana A, Attinger A, Aubry D, Greaney P, Ireson C, Thougaard AV, et al. The NAD biosynthesis inhibitor APO866 has potent antitumor activity against hematologic malignancies. Blood. 2009;113:3276–86.

    Article  CAS  PubMed  Google Scholar 

  15. Zeiser R, Blazar BR. Acute graft-versus-host disease—biologic process, prevention, and therapy. N. Engl J Med. 2017;377:2167–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hill GR, Ferrara JL. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood. 2000;95:2754–9.

    Article  CAS  PubMed  Google Scholar 

  17. Weisdorf D, Haake R, Blazar B, Miller W, McGlave P, Ramsay N, et al. Treatment of moderate/severe acute graft-versus-host disease after allogeneic bone marrow transplantation: an analysis of clinical risk features and outcome. Blood. 1990;75:1024–30.

    Article  CAS  PubMed  Google Scholar 

  18. Roy J, McGlave PB, Filipovich AH, Miller WJ, Blazar BR, Ramsay NK, et al. Acute graft-versus-host disease following unrelated donor marrow transplantation: failure of conventional therapy. Bone Marrow Transpl. 1992;10:77–82.

    CAS  Google Scholar 

  19. Westin JR, Saliba RM, De Lima M, Alousi A, Hosing C, Qazilbash MH, et al. Steroid-refractory acute GVHD: predictors and outcomes. Adv Hematol. 2011;2011:601953.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bruzzone S, Fruscione F, Morando S, Ferrando T, Poggi A, Garuti A, et al. Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE. PLoS One. 2009;4:e7897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rongvaux A, Shea RJ, Mulks MH, Gigot D, Urbain J, Leo O, et al. Pre-B-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynthesis. Eur J Immunol. 2002;32:3225–34.

    Article  CAS  PubMed  Google Scholar 

  22. Nguyen HD, Chatterjee S, Haarberg KM, Wu Y, Bastian D, Heinrichs J, et al. Metabolic reprogramming of alloantigen-activated T cells after hematopoietic cell transplantation. J Clin Investig. 2016;126:1337–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Storb R, Deeg HJ, Whitehead J, Appelbaum F, Beatty P, Bensinger W, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host-disease after marrow transplantation for leukemia. N. Engl J Med. 1986;314:729–35.

    Article  CAS  PubMed  Google Scholar 

  24. McSweeney PA, Niederwieser D, Shizuru JA, Sandmaier BM, Molina AJ, Maloney DG, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97:3390–400.

    Article  CAS  PubMed  Google Scholar 

  25. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, et al. Consensus conference on acute Gvhd grading. Bone Marrow Transpl. 1995;15:825–8.

    CAS  Google Scholar 

  26. Zeiser R, Leveson-Gower DB, Zambricki EA, Kambham N, Beilhack A, Loh J, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood. 2008;111:453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cooke KR, Kobzik L, Martin TR, Brewer J, Delmonte J Jr, Crawford JM, et al. An experimental model of idiopathic pneumonia syndrome after bone marrow transplantation: I. The roles of minor H antigens and endotoxin. Blood. 1996;88:3230–9.

    Article  CAS  PubMed  Google Scholar 

  28. Glass B, Uharek L, Zeis M, Loeffler H, MuellerRuchholtz W, Gassmann W. Graft-versus-leukaemia activity can be predicted by natural cytotoxicity against leukaemia. Brit J Haematol. 1996;93:412–20.

    Article  CAS  Google Scholar 

  29. Zeiser R, Youssef S, Baker J, Kambham N, Steinman L, Negrin RS. Preemptive HMG-CoA reductase inhibition provides graft-versus-host disease protection by Th-2 polarization while sparing graft-versus-leukemia activity. Blood. 2007;110:4588–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101:640–8.

    Article  CAS  PubMed  Google Scholar 

  31. Del Nagro C, Xiao Y, Rangell L, Reichelt M, O’Brien T. Depletion of the central metabolite NAD leads to oncosis-mediated cell death. J Biol Chem. 2014;289:35182–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gatza E, Wahl DR, Opipari AW, Sundberg TB, Reddy P, Liu C, et al. Manipulating the bioenergetics of alloreactive T cells causes their selective apoptosis and arrests graft-versus-host disease. Sci Transl Med. 2011;3:67ra8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Lee CF, Lo YC, Cheng CH, Furtmuller GJ, Oh B, Andrade-Oliveira V, et al. Preventing allograft rejection by targeting immune metabolism. Cell Rep. 2015;13:760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Molina JR, Sun YT, Protopopova M, Gera S, Bandi M, Bristow C, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med. 2018;24:1036–46.

    Article  CAS  PubMed  Google Scholar 

  36. Grolla AA, Travelli C, Genazzani AA, Sethi JK. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br J Pharm. 2016;173:2182–94.

    Article  CAS  Google Scholar 

  37. Samal B, Sun Y, Stearns G, Xie C, Suggs S, McNiece I. Cloning and characterization of the cDNA encoding a novel human pre-B-cell colony-enhancing factor. Mol Cell Biol. 1994;14:1431–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cocho L, Fernandez I, Calonge M, Martinez V, Gonzalez-Garcia MJ, Caballero D, et al. Gene expression-based predictive models of graft versus host disease-associated dry eye. Investig Ophthalmol Vis Sci. 2015;56:4570–81.

    Article  Google Scholar 

  39. Ferrara JL, Levine JE, Reddy P, Holler E. Graft-versus-host disease. Lancet. 2009;373:1550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science. 2013;342:1242454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17:618–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yang H, Yang T, Baur JA, Perez E, Matsui T, Carmona JJ, et al. Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell. 2007;130:1095–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan B, Young DA, Lu ZH, Wang T, Meier TI, Shepard RL, et al. Pharmacological inhibition of nicotinamide phosphoribosyltransferase (NAMPT), an enzyme essential for NAD+ biosynthesis, in human cancer cells: metabolic basis and potential clinical implications. J Biol Chem. 2013;288:3500–11.

    Article  CAS  PubMed  Google Scholar 

  44. Wellen KE, Thompson CB. A two-way street: reciprocal regulation of metabolism and signalling. Nat Rev Mol Cell Biol. 2012;13:270–6.

    Article  CAS  PubMed  Google Scholar 

  45. Sampath D, Zabka TS, Misner DL, O’Brien T, Dragovich PS. Inhibition of nicotinamide phosphoribosyltransferase (NAMPT) as a therapeutic strategy in cancer. Pharm Therapeut. 2015;151:16–31.

    Article  CAS  Google Scholar 

  46. van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YYJ, Beekman JM, van Beekum O, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010;115:965–74.

    Article  PubMed  CAS  Google Scholar 

  47. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, et al. Sirtuin-1 targeting enhances T regulatory (Treg) cell suppressive function by increasing Foxp3 and heat shock protein-70 expression and promotes treg-dependent cardiac allograft survival. Am J Transpl. 2011;11:155-.

    Google Scholar 

  48. Choi S, Reddy P. HDAC inhibition and graft versus host disease. Mol Med. 2011;17:404–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Daenthanasanmak A, Iamsawat S, Chakraborty P, Nguyen HD, Bastian D, Liu C, et al. Targeting Sirt-1 controls GVHD by inhibiting T-cell allo-response and promoting Treg stability in mice. Blood. 2019;133:266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Josefowicz SZ, Rudensky A. Control of regulatory T cell lineage commitment and maintenance. Immunity. 2009;30:616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer. 2010;127:759–67.

    CAS  PubMed  Google Scholar 

  52. Saad A, Lamb LS. Ex vivo T-cell depletion in allogeneic hematopoietic stem cell transplant: past, present and future. Bone Marrow Transpl. 2017;52:1241–8.

    Article  CAS  Google Scholar 

  53. Gehrke I, Bouchard ED, Beiggi S, Poeppl AG, Johnston JB, Gibson SB, et al. On-target effect of FK866, a nicotinamide phosphoribosyl transferase inhibitor, by apoptosis-mediated death in chronic lymphocytic leukemia cells. Clin Cancer Res. 2014;20:4861–72.

    Article  CAS  PubMed  Google Scholar 

  54. Yee GC, Self SG, McGuire TR, Carlin J, Sanders JE, Deeg HJ. Serum cyclosporine concentration and risk of acute graft-versus-host disease after allogeneic marrow transplantation. N. Engl J Med. 1988;319:65–70.

    Article  CAS  PubMed  Google Scholar 

  55. Ratanatharathorn V, Nash RA, Przepiorka D, Devine SM, Klein JL, Weisdorf D, et al. Phase III study comparing methotrexate and tacrolimus (prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92:2303–14.

    CAS  PubMed  Google Scholar 

  56. Zeiser R, Nguyen VH, Beilhack A, Buess M, Schulz S, Baker J, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood. 2006;108:390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Messer J, Reitman D, Sacks HS, Smith H, Chalmers TC. Association of adrenocorticosteroid therapy and peptic-ulcer disease. N. Engl J Med. 1983;309:21–4.

    Article  CAS  PubMed  Google Scholar 

  58. Levine JE, Logan B, Wu J, Alousi AM, Ho V, Bolanos-Meade J, et al. Graft-versus-host disease treatment: predictors of survival. Biol Blood Marrow Transpl. 2010;16:1693–9.

    Article  Google Scholar 

  59. Holen K, Saltz LB, Hollywood E, Burk K, Hanauske AR. The pharmacokinetics, toxicities, and biologic effects of FK866, a nicotinamide adenine dinucleotide biosynthesis inhibitor. Investig New Drugs. 2008;26:45–51.

    Article  CAS  Google Scholar 

  60. Goldinger SM, Gobbi Bischof S, Fink-Puches R, Klemke CD, Dreno B, Bagot M, et al. Efficacy and safety of APO866 in patients with refractory or relapsed cutaneous T-cell lymphoma: a phase 2 clinical trial. JAMA Dermatol. 2016;152:837–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Alexandra Pfister, Christina Schwabegger, Barbara Enrich, Heide Dierbach, Alexandra Wegmayr, and Werner Klotz for excellent technical assistance and helpful advice. We thank H.G. Knaus for generously allocating lab space and the team of the University Hospital for Radiotherapy and Radiation Oncology for providing irradiation equipment. This study was supported by the intramural funding program of the Medical University Innsbruck for young scientists MUI−START (project 2016−01−006 to RRG) and by the Austrian Society of Gastroenterology and Hepatology (ÖGGH to RRG). HT was supported by the Austrian Research Promotion Agency FFG (K−Project No. 843536) funded by the BMVIT, BMWFW, the Wirtschaftsagentur Wien and the Standortagentur Tirol.

Author information

Authors and Affiliations

Authors

Contributions

RRG, SM, KS, FG, LM, BT and BK performed experiments. SR and KS performed flow cytometry analysis. PM provided pathology expertise. ME, HS, ARM and DN provided access to clinical samples and HO performed LC−MS/MS studies. ARM, HT, RZ and DN provided critical feedback and contributed to paper preparation. RRG conceived the study, analyzed and interpreted data and prepared the paper together with SM and DN.

Corresponding authors

Correspondence to Romana R. Gerner or David Nachbaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerner, R.R., Macheiner, S., Reider, S. et al. Targeting NAD immunometabolism limits severe graft-versus-host disease and has potent antileukemic activity. Leukemia 34, 1885–1897 (2020). https://doi.org/10.1038/s41375-020-0709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0709-0

This article is cited by

Search

Quick links