Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell biology

Repolarization of HSC attenuates HSCs failure in Shwachman–Diamond syndrome

Abstract

Shwachman–Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Severely reduced number of HSCs in SDS patients.
Fig. 2: Decreased Cdc42 activity and protein polarity in SDS HSCs.
Fig. 3: Rescue of protein polarity in SDS HSCs and improved HSC function upon Wnt5a or GDF11 treatment.
Fig. 4: Single cell transcriptome analyses of SDS HSCs treated with GDF11.

Similar content being viewed by others

References

  1. Myers KC, Davies SM, Shimamura A. Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin North Am. 2013;27:117–28.

    Article  PubMed  Google Scholar 

  2. Huang JN, Shimamura A. Clinical spectrum and molecular pathophysiology of Shwachman-Diamond syndrome. Curr Opin Hematol. 2011;18:30–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hashmi SK, Allen C, Klaassen R, Fernandez CV, Yanofsky R, Shereck E, et al. Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet. 2011;79:448–58.

    Article  CAS  PubMed  Google Scholar 

  4. Donadieu J, Fenneteau O, Beaupain B, Beaufils S, Bellanger F, Mahlaoui N, et al. Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome. Haematologica. 2012;97:1312–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dror Y, Freedman MH. Shwachman-Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood. 1999;94:3048–54.

    Article  CAS  PubMed  Google Scholar 

  6. Andre V, Longoni D, Bresolin S, Cappuzzello C, Dander E, Galbiati M, et al. Mesenchymal stem cells from Shwachman-Diamond syndrome patients display normal functions and do not contribute to hematological defects. Blood Cancer J. 2012;2:e94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33:97–101.

    Article  CAS  PubMed  Google Scholar 

  8. Dhanraj S, Matveev A, Li H, Lauhasurayotin S, Jardine L, Cada M, et al. Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. Blood. 2017;129:1557–62.

    Article  CAS  PubMed  Google Scholar 

  9. Stepensky P, Chacon-Flores M, Kim KH, Abuzaitoun O, Bautista-Santos A, Simanovsky N, et al. Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in aShwachman-Diamond like syndrome. J Med Genet. 2017;54:558–66.

    Article  CAS  PubMed  Google Scholar 

  10. Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, Leduc MS, et al. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest. 2017;127:4090–103.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rujkijyanont P, Adams SL, Beyene J, Dror Y. Bone marrow cells from patients with Shwachman-Diamond syndrome abnormally express genes involved in ribosome biogenesis and RNA processing. Br J Haematol. 2009;145:806–15.

    Article  CAS  PubMed  Google Scholar 

  12. Wong CC, Traynor D, Basse N, Kay RR, Warren AJ. Defective ribosome assembly in Shwachman-Diamond syndrome. Blood. 2011;118:4305–12.

    Article  CAS  PubMed  Google Scholar 

  13. Burwick N, Coats SA, Nakamura T, Shimamura A. Impaired ribosomal subunit association in Shwachman-Diamond syndrome. Blood. 2012;120:5143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang S, Shi M, Hui CC, Rommens JM. Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol. 2006;26:6656–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rawls AS, Gregory AD, Woloszynek JR, Liu F, Link DC. Lentiviral-mediated RNAi inhibition of Sbds in murine hematopoietic progenitors impairs their hematopoietic potential. Blood. 2007;110:2414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zambetti NA, Bindels EM, Van Strien PM, Valkhof MG, Adisty MN, Hoogenboezem RM, et al. Deficiency of the ribosome biogenesis gene Sbds in hematopoietic stem and progenitor cells causes neutropenia in mice by attenuating lineage progression in myelocytes. Haematologica. 2015;100:1285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Austin KM, Gupta ML Jr, Coats SA, Tulpule A, Mostoslavsky G, Balazs AB, et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest. 2008;118:1511–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Orelio C, Verkuijlen P, Geissler J, van den Berg TK, Kuijpers TW. SBDS expression and localization at the mitotic spindle in human myeloid progenitors. PLoS One. 2009;4:e7084.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Leung R, Cuddy K, Wang Y, Rommens J, Glogauer M. Sbds is required for Rac2-mediated monocyte migration and signaling downstream of RANK during osteoclastogenesis. Blood. 2011;117:2044–53.

    Article  CAS  PubMed  Google Scholar 

  20. Orelio C, Kuijpers TW. Shwachman-Diamond syndrome neutrophils have altered chemoattractant-induced F-actin polymerization and polarization characteristics. Haematologica. 2009;94:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. In K, Zaini MA, Muller C, Warren AJ, von Lindern M, Calkhoven CF. Shwachman-Bodian-Diamond syndrome (SBDS) protein deficiency impairs translation re-initiation from C/EBPalpha and C/EBPbeta mRNAs. Nucleic Acids Res. 2016;44:4134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Geiger H, Zheng Y. Regulation of hematopoietic stem cell aging by the small RhoGTPase Cdc42. Exp Cell Res. 2014;329:214–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Florian MC, Dorr K, Niebel A, Daria D, Schrezenmeier H, Rojewski M, et al. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell. 2012;10:520–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang L, Zheng Y. Cdc42: a signal coordinator in hematopoietic stem cell maintenance. Cell Cycle. 2007;6:1445–50.

    Article  CAS  PubMed  Google Scholar 

  25. Mizukawa B, O’Brien E, Moreira DC, Wunderlich M, Hochstetler CL, Duan X, et al. The cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood. 2017;130:1336–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Hennik PB, de Koning AE, Ploemacher RE. Seeding efficiency of primitive human hematopoietic cells in nonobese diabetic/severe combined immune deficiency mice: implications for stem cell frequency assessment. Blood. 1999;94:3055–61.

    Article  PubMed  Google Scholar 

  27. Geiger H, True JM, de Haan G, Van Zant G. Age- and stage-specific regulation patterns in the hematopoietic stem cell hierarchy. Blood. 2001;98:2966–72.

    Article  CAS  PubMed  Google Scholar 

  28. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Team RC. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019. https://www.R-project.org/.

  30. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Shang X, Guo F, Murphy K, Kirby M, Kelly P, et al. Defective homing is associated with altered Cdc42 activity in cells from patients with Fanconi anemia group A. Blood. 2008;112:1683–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y. Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA. 2007;104:5091–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Florian MC, Nattamai KJ, Dorr K, Marka G, Uberle B, Vas V, et al. A canonical to non-canonical Wnt signalling switch in haematopoietic stem-cell ageing. Nature. 2013;503:392–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guidi N, Sacma M, Standker L, Soller K, Marka G, Eiwen K, et al. Osteopontin attenuates aging-associated phenotypes of hematopoietic stem cells. EMBO J. 2017;36:840–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grigoryan A, Guidi N, Senger K, Liehr T, Soller K, Marka G, et al. LaminA/C regulates epigenetic and chromatin architecture changes upon aging of hematopoietic stem cells. Genome Biol. 2018;19:189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Florian MC, Klose M, Sacma M, Jablanovic J, Knudson L, Nattamai KJ, et al. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol. 2018;16:e2003389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liu W, Du W, Shang X, Wang L, Evelyn C, Florian MC, et al. Rational identification of a Cdc42 inhibitor presents a new regimen for long-term hematopoietic stem cell mobilization. Leuk: Off J Leuk Soc Am, Leuk Res Fund, UK. 2019;33:749–61.

    Article  CAS  Google Scholar 

  38. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L, Ho YJ, et al. Clonal dynamics of native haematopoiesis. Nature. 2014;514:322–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T, Schlenner SM, et al. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature. 2015;518:542–6.

    Article  CAS  PubMed  Google Scholar 

  41. Mizukawa B, O’Brien E, Moreira DC, Wunderlich M, Hochstetler CL, Duan X, et al. Cell polarity determinant CDC42 controls division symmetry to block leukemia cell differentiation. Blood. 2017;130:1336–46.

  42. Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131:717–32.

    Article  CAS  PubMed  Google Scholar 

  43. Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul. 2018;67:109–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khajuria RK, Munschauer M, Ulirsch JC, Fiorini C, Ludwig LS, McFarland SK, et al. Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis. Cell. 2018;173:90–103.e19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Jeff Bailey and Victoria Summey from CCHMC Comprehensive Mouse and Cancer Core for their help with transplantation experiments and mouse bleed and the TTDSL at CCHMC for providing control BM MNCs samples. We thank Research Flow Cytometry Core at CCHMC for support with cell sorting and FACS analyzers. We thank the Schwachman–Diamond Syndrome registry for access to clinical data and samples. SK is currently supported by a Ramalingaswami fellowship, India at CSIR-Central Drug Research Institute, Lucknow. HG is supported by NIH grant DK104814. KCM is funded by a Conquer Cancer Foundation of ASCO Career Development Award, K12 HD028827. RNA-Seq data are archived (accession number will be provided upon publication).

Author information

Authors and Affiliations

Authors

Contributions

SK performed, analyzed experiments, interpreted data, prepared figures, and wrote the manuscript. KCM and HG designed and interpreted experiments, prepared figures, and wrote the manuscript. KJN, AH, AA, CZ, YL, and ML performed and analyzed experiments. RK and MM analyzed RNA-Seq data. AS, MCF, UB, AB, and SMD provided support with respect to experimental design.

Corresponding authors

Correspondence to Hartmut Geiger or Kasiani C. Myers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Nattamai, K.J., Hassan, A. et al. Repolarization of HSC attenuates HSCs failure in Shwachman–Diamond syndrome. Leukemia 35, 1751–1762 (2021). https://doi.org/10.1038/s41375-020-01054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-01054-8

This article is cited by

Search

Quick links