Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronic myelogenous leukemia

Chronic myeloid leukemia: the concepts of resistance and persistence and the relationship with the BCR-ABL1 transcript type

Abstract

Chronic myeloid leukemia is driven by a hybrid gene, BCR-ABL1, that codes for a leukemogenic tyrosine kinase (TK) protein of 210 KDa (p210BCR-ABL1). Resistance to TK inhibitor (TKI) therapy occurs in relatively few patients, no more than 10%, while persistence of minimal residual disease during TKI therapy occurs in the great majority of patients. Resistance is a cause of death, persistence is compatible with a fairly normal length and quality of life, but may require lifelong treatment. The causes of resistance are heterogeneous, including the development of other genomic abnormalities or the altered expression of other genes, requiring different treatments. The causes of persistence may not be the same as those of resistance. We hypothesize that the variability in breakpoint position within the Major-breakpoint cluster region (M-bcr), resulting in two different messenger RNAs that may or may not include exon 14 of BCR (e13a2 and e14a2, respectively), and, as a consequence, in two p210BCR-ABL1 proteins that differ by 25 amino acids, may be a cause of persistence. The hypothesis is based on a critical review of the relationships between the BCR-ABL1 transcript types, the response to TKIs, the outcome of treatment, and the immune response, suggesting that the e14a2 transcript is associated with more and deeper molecular responses, hence with a higher probability of achieving treatment-free remission (TFR). Investigating this putative cause of persistence may help bringing more patients into stable TFR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini D, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Castagnetti F, Gugliotta G, Breccia M, Stagno F, Iurlo A, Albano F, et al. Long-term outcome of chronic myeloid leukemia patients treated frontline with imatinib. Leukemia. 2015;29:1823–31.

    Article  CAS  PubMed  Google Scholar 

  3. Sasaki K, Strom SS, O’Brien S, Jabbour E, Ravandi F, Konopleva M, et al. Relative survival in patients with chronic-phase chronic myeloid leukemia in the tyrosine-kinase inhibitor era: analysis of patients data from six prospective trials. Lancet Hematol. 2015;2:e186–e193.

    Article  Google Scholar 

  4. Bower H, Bjorkholm M, Dickman PW, Hoglund M, Lambert PC, Andersson TM. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol.2016;34:2851–7.

    Article  CAS  PubMed  Google Scholar 

  5. Radich JP, Deininger M, Abboud CN, Altman JK, Berman E, Bhatia R, et al. Clinical practice guidelines in oncology. Chronic Myeloid Leukemia version 1.2019. National Comprehensive Cancer Center. Network. 2018;16:1108–35.

    Google Scholar 

  6. Houshmand M, Simonetti G, Circosta P, Gaidano V, Cignetti A, Martinelli G, et al. Chronic myeloid leukemia stem cells. Leukemia. 2019;33:1543–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016;128:17–23.

    Article  CAS  PubMed  Google Scholar 

  8. Saussele S, Richter J, Hochhaus A, Mahon F-X. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia. 2016;30:1638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Soverini S, Hochhaus A, Nicolini FE, Gruber F, Lange T, Saglio G, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011;118:1208–15.

    Article  CAS  PubMed  Google Scholar 

  10. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108:1809–20.

    Article  CAS  PubMed  Google Scholar 

  11. Melo JV. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood. 1996;88:2375–84.

    CAS  PubMed  Google Scholar 

  12. Soverini S, Mancini M, Bavaro L, Cavo M, Martinelli G. Chronic myeloid leukemia: the paradigm of targeting oncogenic tyrosine kinase signaling and counteracting resistance for successful cancer therapy. Mol Cancer. 2018;17:49.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahon F-X, Deininger MW, Schulteis B, Chabrol G, Reiffers J, Goldman JM, et al. Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood. 2000;96:1070–9.

    CAS  PubMed  Google Scholar 

  14. Mahon F-X, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101:2368–73.

    Article  CAS  PubMed  Google Scholar 

  15. White DL, Saunders VA, Dang P, Engler J, Venables A, Zrim S, et al. Most CML patients who have a suboptimal response to imatinib have low OCT-1 activity: higher doses of imatinib may overcome the negative impact of low OCT-1 activity. Blood. 2007;110:4064–72.

    Article  CAS  PubMed  Google Scholar 

  16. Eadie LN, Hughes TP, White DL. Patients with low OCT-1 activity and high ABCB1 fold rise have poor long-term outcomes in response to tyrosine kinase inhibitors therapy. Leukemia. 2018;32:2288–91.

    Article  CAS  PubMed  Google Scholar 

  17. Pagani IS, Dang P, Kommers IO, Goyne JM, Nicola M, Saunders VA, et al. BCR-ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica. 2018;103:2026–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vigneri P, Stagno F, Stella S, Cupri A, Forte S, Massimino M, et al. High BCR-ABL/GUSIS levels at diagnosis of chronic phase CML are associated with unfavourable responses to standard-dose imatinib. Clin Cancer Res. 2017;23:7189–98.

    Article  CAS  PubMed  Google Scholar 

  19. Ercaliskan A, Eskazan E. The impact of BCR-ABL1 transcript type on tyrosine kinase inhibitor responses and outcomes in patients with chronic myeloid leukemia. Cancer. 2018;124:3806–18.

    Article  CAS  PubMed  Google Scholar 

  20. Mills KL, Mackenzie ED, Birnie GD. The site of the breakpoint within the bcr is a prognostic factor in Philadelphia-positive CML patients. Blood. 1988;72:1237–41.

    CAS  PubMed  Google Scholar 

  21. Baccarani M, Castagnetti F, Gugliotta G, Rosti G, Soverini S, Albeer A, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019;33:1173–83.

    Article  CAS  PubMed  Google Scholar 

  22. The ICSG on CML. Chronic myeloid leukemia, BCR/ABL transcript, response to α-interferon, and survival. Leukemia. 1995;9:1648–51.

    Google Scholar 

  23. Hanfstein B, Lauseker M, Hehlmann R, Saussele S, Erben P, Dietz C, et al. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica. 2014;99:1441–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sasaki K, Kantarjian H, O’Brien S, Ravandi FF, Konopleva M, Borthakur G, et al. Predictions for sustained deep molecular response of BCR-ABL1 levels in patients with chronic myeloid leukemia in chronic phase. Cancer. 2018;124:1160–8.

    Article  CAS  PubMed  Google Scholar 

  25. D’Adda M, Farina M, Schieppati F, Cerqui E, Ruggeri G, Ferrari S, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019. https://doi.org/10.1002/cncr.31977.

    Article  CAS  PubMed  Google Scholar 

  26. Castagnetti F, Gugliotta G, Breccia M, Iurlo A, Levato L, Albano F, et al. The BCR-ABL1 transcript type influences response and outcome in Philadelphia chromosome-positive chronic myeloid leukemia patients treated front-line with imatinib. Am J Hematol. 2017;92:797–805.

    Article  CAS  PubMed  Google Scholar 

  27. Lucas CM, Harris RJ, Giannoudis A, Davies A, Knight K, Watmough SJ, et al. Chronic myeloid leukaemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica. 2009;94:1362–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jain P, Kantarjian H, Patel KP, Nogueras Gonzales G, Luthra R, Shamanna RK, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127:1269–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pagnano KBB, Miranda EC, Delamain MT, Duarte GO, de Paula EV, Lorand-Metze I, et al. Influence of BCR-ABL transcript type on outcome in patients with chronic phase chronic myeloid leukemia treated with imatinib. Clin Lymphoma Myeloma Leuk. 2017;17:728–33.

    Article  PubMed  Google Scholar 

  30. Lin HX, Sjaarda J, Dyck J, Stringer R, Hillis C, Harvey M, et al. Gender and BCR-ABL transcript type are correlated with molecular response to imatinib treatment in patients with chronic myeloid leukemia. Eur J Haematol. 2016;96:360–6.

    Article  CAS  PubMed  Google Scholar 

  31. Castagnetti F, Gugliotta G, Breccia M, Stagno F, D’Adda M, Levato L, et al. Prognostic value of BCR-ABL1 transcript type in chronic myeloid leukemia patients treated frontline with nilotinib. Blood. 2016;128:3070.

    Google Scholar 

  32. Bonifacio M, Scaffidi L, Binotto G, De Marchi F, Maino E, Calistri E, et al. Predictive factors of stable deep molecular response in chronic myeloid leukemia patients treated with standard dose imatinib: a study from the “Gruppo Triveneto LMC”. Blood. 2015;126:597.

    Article  Google Scholar 

  33. Da Silva MS, Miranda EC, Torresan Delamain M, Olivera Duarte G, Vergilio BR, Pascoal Lopes AB, et al. B3A2 transcript is an independent factor for the achievement of a deep molecular response in chronic phase-chronic myeloid leukemia patients treated with imatinib in first line. Blood. 2018;132(S1):1749.

    Google Scholar 

  34. Shanmuganathan N, Branford S, Yong ASM, Hiwase DK, Yeung DT, Ross DM, et al. The e13a2 BCR-ABL1 transcript is associated with higher rates of molecular recurrence after treatment-free remission attempts: retrospective analysis of the Adelaide cohort. Blood. 2018;132(S1):1731.

    Google Scholar 

  35. Clark RE, Polydoros F, Apperley JF, Milojkovic D, Pocock C, Smith G, et al. De-escalation of tyrosine kinase inhibitor dose in patients with chronic myeloid leukaemia with stable major molecular response (DESTINY): an interim analysis of a non-randomized, phase 2 trial. Lancet Haematol. 2017;4:e310–e316.

    Article  PubMed  Google Scholar 

  36. Pfirrmann M, Evtimova D, Saussele S, Castagnetti F, Cervantes F, Janssen J, et al. No influence of BCR-ABL1 transcript types e13a2 and e14a2 on long-term survival: results in 1494 patients with chronic myeloid leukemia treated with imatinib. J Cancer Res Clin Oncol. 2017;143:843–5.

    Article  CAS  PubMed  Google Scholar 

  37. Lee S-E, Choi S-Y, Kim S-H, Song H-Y, Yoo H-L, Lee MJ, et al. Baseline BCR-ABL1 transcript type of e13a2 and large spleen size are predictors of poor long-term outcomes in chronic phase chronic myeloid leukemia patients who failed to achieve an early molecular response after 3 months of imatinib therapy. Leuk Lymphoma. 2018;59:105–13.

    Article  CAS  PubMed  Google Scholar 

  38. Lauseker M, Bachi K, Turkina A, Faber E, Prejzner W, Olsson-Stromberg U, et al. Prognosis of patients with chronic myeloid leukemia diagnosed in advanced phase. Personal communication.

  39. Lee S-E, Choi S-Y, Song H-Y, Choy SY, Song H-Y, Kim S-H, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bernardi S, Malagola M, Zanaglio C, Polverelli N, Dereli Eke E, D’Adda M, et al. Digital PCR improves the quantitation of DMR and the selection of CML candidates to TKIs discontinuation. Cancer Med. 2019;8:2041–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fava C, Rege-Cambrin G, Dogliotti I, Cerrano M, Berchialla P, Dragani M, et al. Observational study of chronic myeloid leukemia patients who discontinued tyrosine kinase inhibitors on clinical practice. Haematologica. 2019;104:1589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Branford S, Yeung DT, Ross DM, Prime JA, Field CR, Altamura HK, et al. Early molecular response and female sex strongly predict stable undetectable BCR-ABL1, the criteria for imatinib discontinuation in patients with chronic myeloid leukemia. Blood. 2013;121:3818–24.

    Article  CAS  PubMed  Google Scholar 

  43. Etienne G, Guilhot J, Rea D, Rigal-Huguet F, Nicolini F, Charbonnier A, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol. 2017;35:298–305.

    Article  PubMed  Google Scholar 

  44. Hochhaus A, Masszi T, Giles FJ, Radich JP, Ross DM, Gomez Casares MT, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia. 2017;31:1525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saussele S, Weisser A, Muller MC, Emgi M, La Rosée P, Paschka P, et al. Frequent polymorphism in BCR exon b2 identified in BCR-ABL positive and negative individuals using fluorescent hybridization probes. Leukemia. 2000;14:2006–10.

    Article  CAS  PubMed  Google Scholar 

  46. Kjaer L, Skov V, Andersen MT, Haggerholm A, Clair P, Gniot M, et al. Variant‐specific discrepancy when quantitating BCR‐ABL1 e13a2 and e14a2 transcripts using the Europe Against Cancer qPCR assay. Eur J Haematol. 2019;103:26–34.

    Article  CAS  PubMed  Google Scholar 

  47. Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, et al. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia. 2017;31:1502–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cutler J, Tahir R, Sreenivasamurthy SK, Mitchell C, Renuse S, Nirujogi RS, et al. Differential signaling through p190 and p210 BCR-ABL fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia. 2017;31:1513–24.

    Article  CAS  PubMed  Google Scholar 

  49. Gratwohl A, Brand R, Apperley J, v. Biezen A, Bandini G, Devergie A, et al. Graft-versus-host disease and outcome in HLA-identical sibling transplantation for chronic myeloid leukemia. Blood. 2002;100:3877–86.

    Article  CAS  PubMed  Google Scholar 

  50. Yasukawa M, Ohminami H, Kojima K, Hato T, Hasegawa A, Takahashi T, et al. HLA class II-restricted antigen presentation of endogenous bcr-abl fusion protein by chronic myelogenous leukemia-derived dendritic cells to CD4+ T lymphocytes. Blood. 2001;98:1498–505.

    Article  CAS  PubMed  Google Scholar 

  51. Bocchia M, Gentili S, Abruzzese E, Fanelli A, Iuliano F, Tabilio A, et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentric observational trial. Lancet. 2005;365:657–62.

    Article  CAS  PubMed  Google Scholar 

  52. Rojas JM, Knight K, Wang L, Clark RE. Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia. 2007;21:2287–95.

    Article  CAS  PubMed  Google Scholar 

  53. Westermann J, Kopp J, van Lessen A, Hecker A-C, Baskaynak G, le Coutre P, et al. Vaccination with autologous non-irradiated dendritic cells in patients with bcr/abl+ chronic myeloid leukaemia. Br J Haematol. 2007;137:297–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Baccarani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baccarani, M., Rosti, G. & Soverini, S. Chronic myeloid leukemia: the concepts of resistance and persistence and the relationship with the BCR-ABL1 transcript type. Leukemia 33, 2358–2364 (2019). https://doi.org/10.1038/s41375-019-0562-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0562-1

This article is cited by

Search

Quick links