Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Infectious medicine, virology

Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Klastersky J. Management of fever in neutropenic patients with different risks of complications. Clin Infect Dis. 2004;39(Suppl 1):S32–7.

    Article  Google Scholar 

  2. 2.

    Freifeld AG, Bow EJ, Sepkowitz KA, Boeckh MJ, Ito JI, Mullen CA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2011;52:e56–93.

    Article  Google Scholar 

  3. 3.

    Bow EJ, Loewen R, Cheang MS, Shore TB, Rubinger M, Schacter B. Cytotoxic therapy-induced D-xylose malabsorption and invasive infection during remission-induction therapy for acute myeloid leukemia in adults. J Clin Oncol. 1997;15:2254–61.

    CAS  Article  Google Scholar 

  4. 4.

    Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13:790–801.

    CAS  Article  Google Scholar 

  5. 5.

    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.

    CAS  Article  Google Scholar 

  6. 6.

    Blijlevens NMA, van’t Land B, Donnelly JP, M’Rabet L, de Pauw BE. Measuring mucosal damage induced by cytotoxic therapy. Support Care Cancer. 2004;12:227–33.

    CAS  Article  Google Scholar 

  7. 7.

    Herbers AHE, Blijlevens NMA, Donnelly JP, de Witte TJM. Bacteraemia coincides with low citrulline concentrations after high-dose melphalan in autologous HSCT recipients. Bone Marrow Transpl. 2008;42:345–9.

    CAS  Article  Google Scholar 

  8. 8.

    Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis. 2012;55:905–14.

    CAS  Article  Google Scholar 

  9. 9.

    Ubeda C, Taur Y, Jenq RR, Equinda MJ, Son T, Samstein M, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest. 2010;120:4332–41.

    CAS  Article  Google Scholar 

  10. 10.

    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004;54:1469–76.

    CAS  Article  Google Scholar 

  11. 11.

    Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7:949–61.

    Article  Google Scholar 

  12. 12.

    Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci. 2008;105:15064–9.

    CAS  Article  Google Scholar 

  13. 13.

    Neville BA, Forde BM, Claesson MJ, Darby T, Coghlan A, Nally K, et al. Characterization of pro-inflammatory flagellin proteins produced by Lactobacillus ruminis and related motile Lactobacilli. PLoS One. 2012;7:e40592.

    CAS  Article  Google Scholar 

  14. 14.

    Cousin FJ, Lynch SM, Harris HMB, McCann A, Lynch DB, Neville BA, et al. Detection and genomic characterization of motility in lactobacillus curvatus: confirmation of motility in a species outside the Lactobacillus salivarius clade. Appl Environ Microbiol. 2015;81:1297–308.

    Article  Google Scholar 

  15. 15.

    Lee M-R, Tsai C-J, Liang S-K, Lin C-K, Huang Y-T, Hsueh P-R. Clinical characteristics of bacteraemia caused by Lactobacillus spp. and antimicrobial susceptibilities of the isolates at a medical centre in Taiwan, 2000–2014. Int J Antimicrob Agents. 2015;46:439–45.

    CAS  Article  Google Scholar 

  16. 16.

    Aguilar-Guisado M, Espigado I, Martín-Peña A, Gudiol C, Royo-Cebrecos C, Falantes J, et al. Optimisation of empirical antimicrobial therapy in patients with haematological malignancies and febrile neutropenia (How Long study): an open-label, randomised, controlled phase 4 trial. Lancet Haematol. 2017;4:e573–e583.

    Article  Google Scholar 

Download references

Acknowledgements

AR was supported by grants from the University of Minnesota (Medical School Innovation award and Foundation grant for new faculty) and a Marrow on the Move grant from the Division of Hematology, Oncology, and Transplantation. In addition, funding from Achieving Cures Together and Hubbard Broadcasting Foundation supported this research. We thank Markas Welke, Andrea Hoeschen, and Kevin Olson for coordinating sample collections. Sequence data were processed and analyzed using the resources of the Minnesota Supercomputing Institute.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Armin Rashidi.

Ethics declarations

Conflict of interest

The authors have no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashidi, A., Kaiser, T., Graiziger, C. et al. Specific gut microbiota changes heralding bloodstream infection and neutropenic fever during intensive chemotherapy. Leukemia 34, 312–316 (2020). https://doi.org/10.1038/s41375-019-0547-0

Download citation

Further reading

Search

Quick links