Molecular targets for therapy

Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7

Abstract

SLAMF7 is expressed mainly on multiple myeloma (MM) cells and considered an ideal target for immunotherapeutic approaches. Indeed, elotuzumab, an anti-SLAMF7 antibody, is used for the treatment of MM in combination with immunomodulatory drugs. SLAMF7 is cleaved via unknown mechanisms and detected as a soluble form (sSLAMF7) exclusively in the serum of MM patients; however, little is known about the role of sSLAMF7 in MM biology. In this study, we found that sSLAMF7 enhanced the growth of MM cells via homophilic interaction with surface SLAMF7 and subsequent activation of the SHP-2 and ERK signaling pathways. Elotuzumab suppressed sSLAMF7-induced MM cell growth both in vitro and in vivo. Promoter analyses identified IKZF1 (Ikaros) as a pivotal transcriptional activator of the SLAMF7 gene. Pharmacological targeting of Ikaros by lenalidomide and its analog pomalidomide downregulated SLAMF7 expression and ameliorated the response of MM cells to sSLAMF7. Elotuzumab blocked the growth-promoting function of sSLAMF7 when combined with lenalidomide in a murine xenograft model. Neutralization of sSLAMF7 is a novel antimyeloma mechanism of elotuzumab, which is enhanced by immunomodulatory drugs via downregulation of surface SLAMF7 expression on MM cells. These findings may provide important information for the optimal use of elotuzumab in MM treatment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Google Scholar 

  2. 2.

    Ozaki S, Handa H, Saitoh T, Murakami H, Itagaki M, Asaoku H, et al. Trends of survival in patients with multiple myeloma in Japan: a multicenter retrospective collaborative study of the Japanese Society of Myeloma. Blood Cancer J. 2015;5:e349.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Kumar SK, Dispenzieri A, Lacy MQ, Gerz MA, Buadi FK, Pandey S, et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia. 2014;28:1122–8.

    CAS  Google Scholar 

  4. 4.

    Kumar SK, Dimopoulos MA, Kastritis E, Terpos E, Nahi H, Goldschmidt H, et al. Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study. Leukemia. 2017;31:2443–8.

    CAS  PubMed  Google Scholar 

  5. 5.

    Touzeau C, Moreau P, Dumontet C. Monoclonal antibody therapy in multiple myeloma. Leukemia. 2017;127:1039–47.

    Google Scholar 

  6. 6.

    Taniwaki M, Yoshida M, Matsumoto Y, Shimura K, Kuroda J, Kaneko H. Elotuzumab for the treatment of relapsed or refractory multiple myeloma, with special reference to its modes of action and SLAMF7 signaling. Mediterr J Hematol Infect Dis. 2018;10:e2018014.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–66.

    CAS  PubMed  Google Scholar 

  8. 8.

    Dimopoulos MA, Oriol A, Nahi H, San-Miguel J, Bahlis NJ, Usmani SZ, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:1319–31.

    CAS  PubMed  Google Scholar 

  9. 9.

    Suzuki K, Dimopoulos MA, Takezako N, Okamoto S, Shinagawa A, Matsumoto N, et al. Daratumumab, lenalidomide, and dexamethasone in East Asian patients with relapsed or refractory multiple myeloma: subgroup analyses of the phase 3 POLLUX study. Blood Cancer J. 2018;8:41.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Mateos M-V, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378:518–28.

    CAS  PubMed  Google Scholar 

  11. 11.

    Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spika I, et al. Elotuzumab therapy for relapsed or refractory multiple myeloma. N Engl J Med. 2015;373:621–31.

    CAS  PubMed  Google Scholar 

  12. 12.

    Jakubowiak A, Offidani M, Pégourie B, De La Rubia J, Garderet L, Laribi K, et al. Randomized phase 2 study: elotuzumab plus bortezomib/dexamethasone vs bortezomib/dexamethasone for relapsed/refractory MM. Blood. 2016;127:2833–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Iida S, Nagai H, Kinoshita G, Miyoshi M, Robbins M, Pandya D, et al. Elotuzumab with lenalidomide and dexamethasone for Japanese patients with relapsed/refractory multiple myeloma: phase 1 study. Int J Hematol. 2017;105:326–34.

    CAS  PubMed  Google Scholar 

  14. 14.

    Demopoulos MA, Dytfeld D, Grosicki S, Moreau P, Takezako N, Hori M, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018;379:1811–22.

    Google Scholar 

  15. 15.

    Wu N, Veillette A. SLAM family receptors in normal immunity and immune pathologies. Curr Opin Immunol. 2016;38:45–51.

    CAS  PubMed  Google Scholar 

  16. 16.

    Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum B, et al. CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 2008;14:2775–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tai Y-T, Dillon M, Song W, Leiba M, Li X-F, Burger P, et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood. 2008;112:1329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dong Z, Cruz-Munoz ME, Zhong MC, Chen R, Latour S, Veillette A. Essential function for SAP family adaptors in the surveillance of hematopoietic cells by natural killer cells. Nat Immunol. 2009;10:973–80.

    CAS  PubMed  Google Scholar 

  19. 19.

    Collins SM, Bakan CE, Swartzel GD, Hofmeister CC, Efebera YA, Kwon H, et al. Elotuzumab directly enhances NK cell cytotoxicity against myeloma via CS1 ligation: evidence for augmented NK cell function complementing ADCC. Cancer Immunol Immunother. 2013;62:1841–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Guo H, Cruz-Munoz ME, Wu N, Robbins M, Veillette A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring src kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol Cell Biol. 2015;35:41–51.

    PubMed  Google Scholar 

  21. 21.

    Chen J, Zhong M-C, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kurdi AT, Glavey SV, Bezman NA, Jhatakia A, Guerriero JL, Manier S, et al. Antibody-dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab. Mol Cancer Ther. 2018;17:1454–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Postelnek J, Neely RJ, Robbins MD, Gleason CR, Peterson JE, Piccoli SP. Development and validation of electrochemiluminescence assays to measure free and total sSLAMF7 in human serum in the absence and presence of elotuzumab. AAPS J. 2016;18:989–99.

    CAS  PubMed  Google Scholar 

  24. 24.

    Ishibashi M, Soeda S, Sasaki M, Handa H, Imai Y, Tanaka N, et al. Clinical impact of serum soluble SLAMF7 in multiple myeloma. Oncotarget. 2018;9:34784–93.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kikuchi J, Kuroda Y, Koyama D, Osada N, Izumi T, Yasui H, et al. Myeloma cells are activated in bone marrow microenvironment by the CD180/MD-1 complex which senses lipopolysaccharide. Cancer Res. 2018;78:1766–78.

    CAS  PubMed  Google Scholar 

  26. 26.

    Kikuchi J, Koyama D, Wada T, Izumi T, Hofgaard PO, Bogen B, et al. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J Clin Investig. 2015;125:4375–90.

    PubMed  Google Scholar 

  27. 27.

    Saito S, Kikuchi J, Koyama D, Sato S, Koyama H, Osada N, et al. Eradication of central nervous system leukemia of T-cell origin with a brain-permeable LSD1 inhibitor. Clin Cancer Res. 2019;25:1601–11.

    PubMed  Google Scholar 

  28. 28.

    Kikuchi J, Wada T, Shimizu R, Izumi T, Akutsu M, Mitunaga K, et al. Histone deacetylases are critical targets of bortezomib-induced cytotoxicity in multiple myeloma. Blood. 2010;116:406–17.

    CAS  PubMed  Google Scholar 

  29. 29.

    Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M. The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol. 2000;20:8513–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gu S, Sayad A, Chan G, Yang W, Lu Z, Virtanen C, et al. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. Leukemia. 2018;32:203–13.

    CAS  PubMed  Google Scholar 

  31. 31.

    Mainardi S, Mulero-Sánchez A, Prahallad A, Germano G, Bosma A, Krimpenfort P, et al. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat Med. 2018;24:961–7.

    CAS  PubMed  Google Scholar 

  32. 32.

    Lapalombella R, Yu B, Triantafillou G, Liu Q, Butchar JP, Lozanski G, et al. Lenalidomide down-regulates the CD20 antigen and antagonizes direct and antibody-dependent cellular cytotoxicity of rituximab on primary chronic lymphocytic leukemia cells. Blood. 2008;112:5180–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Fedele PL, Willis SN, Liao Y, Low MS, Rautela J, Segal DH, et al. IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos. Blood. 2018;132:2166–78.

    CAS  PubMed  Google Scholar 

  34. 34.

    Kim JR, Mathew SO, Mathew PA. Blimp-1/PRDM1 regulates the transcription of human CS1 (SLAMF7) gene in NK and B cells. Immunobiology. 2016;221:31–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 2014;343:301–5.

    PubMed  Google Scholar 

  36. 36.

    Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.

    CAS  PubMed  Google Scholar 

  37. 37.

    Bjorklund CC, Lu L, Kang J, Hagner PR, Havens CG, Amatangelo M, et al. Rate of CRL4CRBN substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4. Blood Cancer J. 2015;5:e354.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Zonder JA, Mohrbacher AF, Singhal S, van Rhee F, Bensinger WI, Ding H, et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood. 2012;120:552–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    van Rhee F, Szmania SM, Dillon M, van Abbema AM, Li X, Stone MK, et al. Combinatorial efficacy of anti-CS1 monoclonal antibody elotuzumab (HuLuc63) and bortezomib against multiple myeloma. Mol Cancer Ther. 2009;8:2616–24.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood. 2002;99:754–8.

    CAS  PubMed  Google Scholar 

  41. 41.

    Poulart V, Jou YM, Delmonte T, Robbins M. Fc-gamma receptor polymorphisms and progression-free survival: analysis of three clinical trials of elotuzumab in multiple myeloma. Haematologica 2016;101(Suppl 1):529–30.

  42. 42.

    Postelnek J, Sheridan J, Keller S, Pazina T, Sheng J, Poulart V, et al. Effects of elotuzumab on soluble SLAMF7 levels in multiple myeloma. Blood. 2015;126:2964.

    Google Scholar 

  43. 43.

    He Y, Bouwstra R, Wiersma VR, de Jong M, Jan Lourens H, Fehrmann R, et al. Cancer cell-expressed SLAMF7 is not required for CD47-mediated phagocytosis. Nat Commun. 2019;10:533.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Furukawa Y, Kikuchi J. Molecular pathogenesis of multiple myeloma. Int J Clin Oncol. 2015;20:413–22.

    CAS  PubMed  Google Scholar 

  45. 45.

    Weinhold N, Ashby C, Rasche L, Chavan SS, Stein C, Stephens OW, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016;128:1735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Johnson DC, Lenive O, Mitchell J, Jackson G, Owen R, Drayson M, et al. Neutral tumor evolution in myeloma is associated with poor prognosis. Blood. 2017;130:1639–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Xie Z, Gunaratne J, Cheong LL, Liu SC, Koh TL, Huang G, et al. Plasma membrane proteomics identifies biomarkers associated with MMSET overexpression in t(4;14) multiple myeloma. Oncotarget. 2013;4:1008–18.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Ms Akiko Yonekura and Ms Michiko Ogawa as well as the Core Center of Research Apparatus, Jichi Medical University for technical assistance. This work was supported by the Ministry of Education, Culture, Sports, Science and Technology-supported program for the Strategic Foundation at Private Universities, the Bristol-Myers Squibb Research Grant (to YF), and a Grant-in-Aid for Scientific Research from JSPS (to JK, DK, and YF). JK and YF were funded by the Japan Leukemia Research Fund, Yasuda Memorial Cancer Foundation, Takeda Science Foundation, and Novartis Foundation Japan. JK was also funded by Mitsui Life Social Welfare Foundation and SENSHIN Medical Research Foundation. JK received the Kano Foundation Research Grant and the International Myeloma Foundation Japan’s Grant.

Author information

Affiliations

Authors

Contributions

JK, MH and HI performed experiments, analyzed data, and drafted the paper; NTS and SH measured sSLAMF7 in clinical and experimental samples, YK and DK performed experiments; TI and HY provided clinical samples and cell lines; and AS and YF designed and supervised research and finalized the paper. All authors read and approved the paper before submission.

Corresponding author

Correspondence to Yusuke Furukawa.

Ethics declarations

Conflict of interest

This study was funded by Bristol-Myers Squibb K.K. AS is an employee of Bristol-Myers Squibb K.K.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, J., Hori, M., Iha, H. et al. Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia 34, 180–195 (2020). https://doi.org/10.1038/s41375-019-0525-6

Download citation

Further reading

Search