Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytogenetics and molecular genetics

The mutational burden of therapy-related myeloid neoplasms is similar to primary myelodysplastic syndrome but has a distinctive distribution

Abstract

Therapy-related myeloid neoplasms (T-MN) are poorly characterized secondary hematological malignancies following chemotherapy/radiotherapy exposure. We compared the clinical and mutational characteristics of T-MN (n = 129) and primary myelodysplastic syndrome (P-MDS, n = 108) patients. Although the somatic mutation frequency was similar between T-MN and P-MDS patients (93% in both groups), the pattern was distinct. TP53 mutations were more frequent in T-MN (29.5 vs. 7%), while spliceosomal complex mutations were more common in P-MDS (56.5 vs. 25.6%). In contrast to P-MDS, the ring sideroblasts (RS) phenotype was not associated with better survival in T-MN, most probably due to genetic association with TP53 mutations. SF3B1 was mutated in 96% of P-MDS with ≥15% RS, but in only 32% T-MN. TP53 mutations were detected in 92% T-MN with ≥15% RS and SF3B1 wild-type cases. Interestingly, T-MN and P-MDS patients with “Very low” or “Low” Revised International Prognostic Scoring System (IPSS-R) showed similar biological and clinical characteristics. In a Cox regression analysis, TP53 mutation was a poor prognostic factor in T-MN, independent of IPSS-R cytogenetics, disease-modifying therapy, and NRAS mutation. Our data have direct implications for T-MN management and provide evidence that, in addition to conventional disease parameters, mutational analysis should be incorporated in T-MN risk stratification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Sem Oncol. 2013;40:666–75.

    Article  CAS  Google Scholar 

  3. Ok CY, Hasserjian RP, Fox PS, Stingo F, Zuo Z, Young KH, et al. Application of the international prognostic scoring system-revised in therapy-related myelodysplastic syndromes and oligoblastic acute myeloid leukemia. Leukemia. 2014;28:185–9.

    Article  CAS  PubMed  Google Scholar 

  4. Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 2013;27:1275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–47.

    Article  CAS  PubMed  Google Scholar 

  6. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, et al. Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 2016;49:204–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Ok CY, Patel KP, Garcia-Manero G, Routbort MJ, Fu B, Tang G, et al. Mutational profiling of therapy-related myelodysplastic syndromes and acute myeloid leukemia by next generation sequencing, a comparison with de novo diseases. Leuk Res. 2015;39:348–54.

    Article  CAS  PubMed  Google Scholar 

  9. Wong TN, Ramsingh G, Young AL, Miller CA, Touma W, Welch JS, et al. Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature. 2015;518:552–55.

    Article  CAS  PubMed  Google Scholar 

  10. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Luana F, Livio P, Alfonso P, Anna C, Gianluca G, Massimo B, et al. Characteristics and outcome of therapy-related myeloid neoplasms: report from the Italian network on secondary leukemias. Am J Hematol. 2015;90:E80–E85.

    Article  CAS  Google Scholar 

  12. Bacher U, Haferlach C, Alpermann T, Schnittger S, Kern W, Haferlach T. Patients with therapy-related myelodysplastic syndromes and acute myeloid leukemia share genetic features but can be separated by blast counts and cytogenetic risk profiles into prognostically relevant subgroups. Leuk Lymphoma. 2013;54:639–42.

    Article  PubMed  Google Scholar 

  13. Hiwase DK, Singhal D, Strupp C, Chhetri R, Kutyna MM, Wee LA, et al. Dynamic assessment of RBC-transfusion dependency improves the prognostic value of the revised-IPSS in MDS patients. Am J Hematol. 2017;92:508–14.

    Article  PubMed  Google Scholar 

  14. Schoch C, Kern W, Schnittger S, Hiddemann W, Haferlach T. Karyotype is an independent prognostic parameter in therapy-related acute myeloid leukemia (t-AML): an analysis of 93 patients with t-AML in comparison to 1091 patients with de novo AML. Leukemia. 2003;18:120–25.

    Article  Google Scholar 

  15. Zeidan AM, Al Ali N, Barnard J, Padron E, Lancet JE, Sekeres MA, et al. Comparison of clinical outcomes and prognostic utility of risk stratification tools in patients with therapy-related vs de novo myelodysplastic syndromes: a report on behalf of the MDS Clinical Research Consortium. Leukemia. 2017;31:1391.

    Article  CAS  PubMed  Google Scholar 

  16. Smith SM, Le Beau MM, Huo D, Karrison T, Sobecks RM, Anastasi J, et al. Clinical-cytogenetic associations in 306 patients with therapy-related myelodysplasia and myeloid leukemia: the University of Chicago series. Blood. 2003;102:43–52.

    Article  CAS  PubMed  Google Scholar 

  17. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Görlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128:686–98.

    Article  CAS  PubMed  Google Scholar 

  19. Voso MT, Fabiani E, Fianchi L, Falconi G, Criscuolo M, Santangelo R, et al. Mutations of epigenetic regulators and of the spliceosome machinery in therapy-related myeloid neoplasms and in acute leukemias evolved from chronic myeloproliferative diseases. Leukemia. 2013;27:982–5.

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen-Bjergaard J, Andersen MK, Andersen MT, Christiansen DH. Genetics of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 2008;22:240–8.

    Article  CAS  PubMed  Google Scholar 

  21. Shih AH, Chung SS, Dolezal EK, Zhang SJ, Abdel-Wahab OI, Park CY, et al. Mutational analysis of therapy-related myelodysplastic syndromes and acute myelogenous leukemia. Haematologica. 2013;98:908–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fabiani E, Falconi G, Fianchi L, Criscuolo M, Leone G, Voso MT. SETBP1 mutations in 106 patients with therapy-related myeloid neoplasms. Haematologica. 2014;99:e152–e53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Strahm B, Wlodarski MW, Pastor VB, Przychodzien B, Catala A, Dworzak M, et al. Impact of somatic mutations on the outcome of children and adolescents with therapy-related myelodysplastic syndrome. Blood. 2016;128:3162.

    Article  Google Scholar 

  25. Sallman DA, Komrokji R, Vaupel C, Cluzeau T, Geyer SM, McGraw KL, et al. Impact of TP53 mutation variant allele frequency on phenotype and outcomes in myelodysplastic syndromes. Leukemia. 2015;30:666–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Alfonso Pierola A, Marchesini M, Takahashi K, Gañán-Gómez I, Fiorini E, Ogoti Y, et al. The role of Chip-related DNA damage response dysfunction in therapy-related myeloid neoplasms. Blood. 2016;128:958.

    Article  Google Scholar 

  29. Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126:233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kamp WM, Wang P-y, Hwang PM. TP53 mutation, mitochondria and cancer. Curr Opin Genet Dev. 2016;38:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365:1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Crosby WH. Acute granulocytic leukemia, a complication of therapy in Hodgkin’s disease? Clin Res. 1969;17:463.

    Google Scholar 

  33. Steinberg MH, Geary CG, Crosby WH. Acute granulocytic leukemia complicating hodgkin’s disease. Arch Intern Med. 1970;125:496–98.

    Article  CAS  PubMed  Google Scholar 

  34. Kayser S, Dohner K, Krauter J, Kohne CH, Horst HA, Held G, et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;117:2137–45.

    Article  CAS  PubMed  Google Scholar 

  35. Kern W, Haferlach T, Schnittger S, Hiddemann W, Schoch C. Prognosis in therapy-related acute myeloid leukemia and impact of karyotype. J Clin Oncol. 2004;22:2510–11.

    Article  PubMed  Google Scholar 

  36. Armand P, Kim HT, DeAngelo DJ, Ho VT, Cutler CS, Stone RM, et al. Impact of cytogenetics on outcome of de novo and therapy-related AML and MDS after allogeneic transplantation. Biol Blood Marrow Transplant. 2007;13:655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh ZN, Huo D, Anastasi J, Smith SM, Karrison T, Le Beau MM, et al. Therapy-related myelodysplastic syndrome morphologic subclassification may not be clinically relevant. Am J Clin Pathol. 2007;127:197–205.

    Article  PubMed  Google Scholar 

  38. Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, et al. Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 2014;28:78–87.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129:2347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, et al. Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 2017;376:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Della Porta MG, Alessandrino EP, Bacigalupo A, van Lint MT, Malcovati L, Pascutto C, et al. Predictive factors for the outcome of allogeneic transplantation in patients with MDS stratified according to the revised IPSS-R. Blood. 2014;123:2333–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Royal Adelaide Hospital Research Committee, Contributing Hematologists Committee, and Royal Adelaide Hospital.

Author contributions

DS: planned and performed mutational analysis, analyzed data, and wrote the manuscript. LYAW: processed samples, analyzed data, and edited the manuscript. MMK and RC: analyzed data and edited the manuscript. JG, AWS, JF, and PP-SW: analyzed bioinformatics data and provided critical comments. MB, WTP, and SH: processed samples and analyzed data. SE: provided statistical advice. SM and PA: analyzed data and provided critical comments. SB and ALB: provided critical comments and edited the manuscript. NS and RG: provided clinical information and critical comments. TK, LBT, PGB, IDL, RJD: provided critical comments. JPM: provided critical comments and edited the manuscript. HSS: developed the project, analyzed data, and edited the manuscript. CNH: developed the project, analyzed data, and edited the manuscript. DKH: developed the project, analyzed data, and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Hiwase.

Ethics declarations

Conflict of interest

SB received research funding and honoraria and served on advisory committees from Novartis and Bristol-Myers Squibb, and consultancy fees and honoraria from Qiagen and Cepheid. HSS received honoraria from Celgene. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhal, D., Wee, L.Y.A., Kutyna, M.M. et al. The mutational burden of therapy-related myeloid neoplasms is similar to primary myelodysplastic syndrome but has a distinctive distribution. Leukemia 33, 2842–2853 (2019). https://doi.org/10.1038/s41375-019-0479-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0479-8

This article is cited by

Search

Quick links