Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular targets for therapy

MARCKS regulates tonic and chronic active B cell receptor signaling

A Correction to this article was published on 01 December 2023

This article has been updated

Abstract

Tonic or chronic active B-cell receptor (BCR) signaling is essential for the survival of normal or some malignant B cells, respectively. However, the molecular mechanism regulating the strength of these two types of BCR signaling remains unknown. Here, using high-speed high-resolution single-molecule tracking in live cells, we identified that PKCĪ², STIM1, and IP3R1/2/3 molecules affected the lateral Brownian mobile behavior of BCRs on the plasma membrane of quiescent B cells, which was correlated to the strength of BCR signaling. Further mechanistic studies revealed that these three molecules influenced BCR mobility by regulating the membrane tethering of MARCKS to the inner leaflet of the plasma membrane. Indeed, membrane-untethered or deficiency of MARCKS significantly decreased, while membrane-tethered or overexpression of MARCKS drastically increased the lateral mobility of BCRs. Functional experiments indicated that the membrane-tethered MARCKS suppressed the survival and/or proliferation in both B-cell tumor cells and mouse primary splenic B cells in vitro and in vivo. Mechanistically, we found that membrane-tethered MARCKS increased BCR lateral mobility, and thus decreased BCR nanoclustering by disturbing the interaction between cortical F-actin and the inner leaflet of the plasma membrane, resulting in the suppression of the strength of both tonic and chronic active BCR signaling. Conclusively, MARCKS is a newly identified molecule regulating the strength of BCR signaling by modulating cytoskeleton and plasma membrane interactions, both in the physiological and pathological conditions, suggesting thatĀ MARCKS is a putative target for drug design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. Lam K-P, KĆ¼hn R, Rajewsky K. Invivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90:1073ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the IgĪ±/Ī² heterodimer. Cell. 2004;117:787ā€“800.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Schweighoffer E, Vanes L, Nys J, Cantrell D, McCleary S, Smithers N, et al. The BAFF receptor transduces survival signals by co-opting the B cell receptor signaling pathway. Immunity. 2013;38:475ā€“88.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Love PE, Shores EW, Johnson MD, Tremblay ML, Lee EJ, Grinberg A, et al. T cell development in mice that lack the zeta chain of the T cell antigen receptor complex. Science. 1993;261:918.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Wang K, Yamamoto H, Chin JR, Werb Z, Vu TH. Epidermal growth factor receptor-deficient mice have delayed primary endochondral ossification because of defective osteoclast recruitment. J Biol Chem. 2004;279:53848ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Frederic M, Antonio F, Stephanie S, Laurence T, Serge L, Francois M-G, et al. A novel immunodeficient mouse model--RAG2 x common cytokine receptor gamma chain double mutants--requiring exogenous cytokine administration for human hematopoietic stem cell engraftment. J Interferon Cytokine Res. 1998;19:533ā€“41.

    Google ScholarĀ 

  7. Baird AM, Gerstein RM, Berg LJ. The role of cytokine receptor signaling in lymphocyte development. Curr Opin Immunol. 1999;11:157ā€“66.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Rajewsky K. Clonal selection and learning in the antibody system. Nature. 1996;381:751ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Okkenhaug K, Burger JA. PI3K signaling in normal B cells and chronic lymphocytic leukemia (CLL). In: Kurosaki T, Wienands J, editors. B cell receptor signaling. Springer: Cham, Switzerland, 2015. p. 123ā€“42.

    Google ScholarĀ 

  10. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463:88ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Young RM, Staudt LM. Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov. 2013;12:229ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  12. Chen L, Monti S, Juszczynski P, Daley J, Chen W, Witzig TE, et al. SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood. 2008;111:2230.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Pore D, Bodo J, Danda A, Yan D, Phillips JG, Lindner D, et al. Identification of Ezrin-Radixin-Moesin proteins as novel regulators of pathogenic B cell receptor signaling and tumor growth in diffuse large B cell lymphoma. Leukemia. 2015;29:1857ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Hendriks RW, Yuvaraj S, Kil LP. Targeting Brutonā€™s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14:219ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490:116ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Wang ML, Rule S, Martin P, Goy A, Auer R, Kahl BS, et al. Targeting BTK with Ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369:507ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Naylor TL, Tang H, Ratsch BA, Enns A, Loo A, Chen L, et al. Protein kinase C inhibitor sotrastaurin selectively inhibits the growth of CD79 mutant diffuse large B-cell lymphomas. Cancer Res. 2011;71:2643.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Moreau A-S, Jia X, Ngo HT, Leleu X, Sullivan G, Alsayed Y, et al. Protein kinase C inhibitor enzastaurin induces in vitro and in vivo antitumor activity in Waldenstrƶm macroglobulinemia. Blood. 2007;109:4964.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, et al. The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity. 2010;32:187ā€“99.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Liu W, Wang H, Xu C. Antigen receptor nanoclusters: small units with big functions. Trends Immunol. 2016;37:680ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Mattila Pieta K, Feest C, Depoil D, Treanor B, Montaner B, Otipoby Kevin L, et al. The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling. Immunity. 2013;38:461ā€“74.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Lee J, Sengupta P, Brzostowski J, Lippincott-Schwartz J, Pierce SK, Lidke D. The nanoscale spatial organization of B-cell receptors on immunoglobulin Mā€“ and Gā€“expressing human B-cells. Mol Biol Cell. 2017;28:511ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Yang J, Reth M. Oligomeric organization of the B-cell antigen receptor on resting cells. Nature. 2010;467:465ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, et al. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolsonā€™s fluid-mosaic model. Annu Rev Cell Dev Biol. 2012;28:215ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Tolar P, Hanna J, Krueger PD, Pierce SK. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity. 2009;30:44ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Wang J, Tang S, Wan Z, Gao Y, Cao Y, Yi J, et al. Utilization of a photoactivatable antigen system to examine B-cell probing termination and the B-cell receptor sorting mechanisms during B-cell activation. Proc Natl Acad Sci USA. 2016;113:E558ā€“67.

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Liu W, Meckel T, Tolar P, Won Sohn H, Pierce SK. Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity. 2010;32:778ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Liu W, Meckel T, Tolar P, Sohn HW, Pierce SK. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med. 2010;207:1095ā€“111.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Treanor B, Depoil D, Bruckbauer A, Batista FD. Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med. 2011;208:1055ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Yasuda T, Yamamoto T. Analysis of B-cell signaling using DT40 B-cell line. In: Gu H, Rajewsky K, editors. B cell protocols.Totowa, NJ: Humana Press; 2004. p. 261ā€“70. .

    ChapterĀ  Google ScholarĀ 

  31. Winding P, Berchtold MW. The chicken B cell line DT40: a novel tool for gene disruption experiments. J Immunol Methods. 2001;249:1ā€“16.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Shinohara H, Yasuda T, Aiba Y, Sanjo H, Hamadate M, Watarai H, et al. PKCĪ² regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J Exp Med. 2005;202:1423.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Baba Y, Hayashi K, Fujii Y, Mizushima A, Watarai H, Wakamori M, et al. Coupling of STIM1 to store-operated Ca(2+) entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc Natl Acad Sci USA. 2006;103:16704ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  34. Sugawara H, Kurosaki M, Takata M, Kurosaki T. Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5ā€trisphosphate receptors in signal transduction through the Bā€cell antigen receptor. EMBO J. 1997;16:3078.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  35. Liu W, Won Sohn H, Tolar P, Meckel T, Pierce SK. Antigen-induced oligomerization of the B cell receptor is an early target of FcĪ³RIIB inhibition. J Immunol. 2010;184:1977ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, et al. Through an ITIM-independent mechanism the FcĪ³RIIB blocks B cell activation by disrupting the colocalized microclustering of the B cell receptor and CD19. J Immunol. 2014;192:5179ā€“91.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Liu W, Chen E, Zhao XW, Wan ZP, Gao YR, Davey A. et al. The scaffolding protein Synapse-Associated Protein 97 is required for enhanced signaling through isotype-switched IgG memory B cell receptors. Sci Signal. 2012;5:ra54

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  38. Kurosaki T, Shinohara H, Baba Y. B cell signaling and fate decision. Annu Rev Immunol. 2010;28:21ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Kurosaki T. Genetic analysis of B cell antigen receptor signaling. Annu Rev Immunol. 1999;17:555ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Arbuzova A, Schmitz AAP, VergƈRes G. Cross-talk unfolded: MARCKS proteins. Biochem J. 2002;362:1ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  41. Trovo L, Ahmed T, Callaerts-Vegh Z, Buzzi A, Bagni C, Chuah M, et al. Low hippocampal PI(4,5)P2 contributes to reduced cognition in old mice as a result of loss of MARCKS. Nat Neurosci. 2013;16:449ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  42. Gadi D, Wagenknecht-Wiesner A, Holowka D, Baird B. Sequestration of phosphoinositides by mutated MARCKS effector domain inhibits stimulated Ca2+ mobilization and degranulation in mast cells. Mol Biol Cell. 2011;22:4908ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  43. McLaughlin S, Murray D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature. 2005;438:605ā€“11.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Chen X, Pan W, Sui Y, Li H, Shi X, Guo X, et al. Acidic phospholipids govern the enhanced activation of IgG-B cell receptor. Nat Commun. 2015;6:8552.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Chu C, Wang Y, Zhang X, Ni X, Cao J, Xu W, et al. SAP-regulated T cellā€“APC adhesion and ligation-dependent and -independent Ly108ā€“CD3Ī¶ interactions. J Immunol. 2014;193:3860.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Baba Y, Kurosaki T. Impact of Ca2+ signaling on B cell function. Trends Immunol. 2011;32:589ā€“94.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Ziemba Brian P, Burke John E, Masson G, Williams Roger L, Falke Joseph J. Regulation of PI3K by PKC and MARCKS: single-molecule analysis of a reconstituted signaling pathway. Biophys J. 2016;110:1811ā€“25.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Knight JD, Lerner MG, Marcano-VelĆ”zquez JG, Pastor RW, Falke Joseph J. Single molecule diffusion of membrane-bound proteins: window into lipid contacts and bilayer dynamics. Biophys J. 2010;99:2879ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Knight JD, Falke JJ. Single-molecule fluorescence studies of a PH domain: new insights into the membrane docking reaction. Biophys J. 2009;96:566ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  50. Xu L, Xia M, Guo J, Sun X, Li H, Xu C, et al. Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcgammaRIIB-T232. J Exp Med. 2016;213:2707ā€“27.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  51. Zhang J, Leiderman K, Pfeiffer JR, Wilson BS, Oliver JM, Steinberg SL. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron. 2006;37:14ā€“34.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Gambhir A, HangyĆ”s-MihĆ”lynĆ© G, Zaitseva I, Cafiso DS, Wang J, Murray D, et al. Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophys J. 2004;86:2188ā€“207.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Wang J, Arbuzova A, Hangyas-Mihalyne G, McLaughlin S. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2001;276:5012ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Wang J, Gambhir A, Hangyas-Mihalyne G, Murray D, Golebiewska U, McLaughlin S. Lateral sequestration of phosphatidylinositol 4,5-bisphosphate by the basic effector domain of myristoylated alanine-rich C kinase substrate is due to nonspecific electrostatic interactions. J Biol Chem. 2002;277:34401ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  55. McLaughlin S, Wang J, Gambhir A, Murray D. PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct. 2002;31:151ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  56. Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol. 2003;65:761ā€“89.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, et al. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeletonā€“plasma membrane adhesion. Cell. 2000;100:221ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, et al. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature. 2010;466:263ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Brenner MD, Zhou R, Conway DE, Lanzano L, Gratton E, Schwartz MA, et al. Spider silk Peptide is a compact, linear nanospring ideal for intracellular tension sensing. Nano Lett. 2016;16:2096ā€“102.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Resh MD. Myristylation and palmitylation of Src family members: the fats of the matter. Cell. 1994;76:411ā€“3.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Suh B-C, Inoue T, Meyer T, Hille B. Rapid chemically induced changes of PtdIns(4,5)P2 gate KCNQ ion channels. Science. 2006;314:1454ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 2010;11:276ā€“87.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct. 2005;34:351ā€“78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  64. Kasai RS, Suzuki KGN, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, et al. Full characterization of GPCR monomerā€“dimer dynamic equilibrium by single molecule imaging. J Cell Biol. 2011;192:463.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Hamada K, Shimizu T, Matsui T, Tsukita S, Tsukita S, Hakoshima T. Structural basis of the membraneā€targeting and unmasking mechanisms of the radixin FERM domain. EMBO J. 2000;19:4449ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  66. Ben-Aissa K, Patino-Lopez G, Belkina NV, Maniti O, TR, Hao JJ, et al. Activation of moesin, a protein that links actin cytoskeleton to the plasma membrane, occurs by phosphatidylinositol 4,5-bisphosphate (PIP2) binding sequentially to two sites and releasing an autoinhibitory linker. J Biol Chem. 2012;287:16311ā€“23.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  67. Braunger JA, Bruckner BR, Nehls S, Pietuch A, Gerke V, Mey I, et al. Phosphatidylinositol 4,5-bisphosphate alters the number of attachment sites between ezrin and actin filaments: a colloidal probe study. J Biol Chem. 2014;289:9833ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Bickeboller M, Tagscherer KE, Kloor M, Jansen L, Chang-Claude J, Brenner H, et al. Functional characterization of the tumor-suppressor MARCKS in colorectal cancer and its association with survival. Oncogene. 2015;34:1150ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Michel S, Kloor M, Singh S, Gdynia G, Roth W, von Knebel Doeberitz M, et al. Coding microsatellite instability analysis in microsatellite unstable small intestinal adenocarcinomas identifies MARCKS as a common target of inactivation. Mol Carcinog. 2010;49:175ā€“82.

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Kim N-G, Rhee H, Li LS, Kim H, Lee J-S, Kim J-H, et al. Identification of MARCKS, FLJ11383 and TAF1B as putative novel target genes in colorectal carcinomas with microsatellite instability. Oncogene. 2002;21:5081ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Jarboe JS, Anderson JC, Duarte CW, Mehta T, Nowsheen S, Hicks PH, et al. MARCKS regulates growth and radiation sensitivity and is a novel prognostic factor for glioma. Clin Cancer Res. 2012;18:3030ā€“41.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Gutierrez NC, Ocio EM, de las Rivas J, Maiso P, Delgado M, Ferminan E, et al. Gene expression profiling of B lymphocytes and plasma cells from Waldenstromā€™s macroglobulinemia: comparison with expression patterns of the same cell counterparts from chronic lymphocytic leukemia, multiple myeloma and normal individuals. Leukemia. 2007;21:541ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  73. Simek SL, Kligman D, Patel J, Colburn NH. Differential expression of an 80-kDa protein kinase C substrate in preneoplastic and neoplastic mouse JB6 cells. Proc Natl Acad Sci USA. 1989;86:7410ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  74. Joseph CK, Qureshi SA, Wallace DJ, Foster DA. MARCKS protein is transcriptionally down-regulated in v-Src-transformed BALB/c 3T3 cells. J Biol Chem. 1992;267:1327ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  75. Wolfman A, Wingrove TG, Blackshear PJ, Macara IG. Down-regulation of protein kinase C and of an endogenous 80-kDa substrate in transformed fibroblasts. J Biol Chem. 1987;262:16546ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Brooks G, Brooks SF, Goss MW. MARCKS functions as a novel growth suppressor in cells of melanocyte origin. Carcinogenesis. 1996;17:683ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgements

We thank Dr. Tomohiro Kurosaki and Dr. Hisaaki Shinohara (WPI Immunology Frontier Research Center, Osaka University, Japan) for providing DT40 cell lines, Dr. Carlos G. Dotti (Consejo Superior de Investigaciones CientĆ­ficas) for providing MARCKS plasmid, Dr. Feng Zhang (MIT, Cambridge) for providing plasmids of pSpCas9-2a-GFP. We are supported by funds from National Science Foundation China (8182500030, 81730043 and 81621002) and Ministry of Science and Technology of China (2014CB542500-03).

Author Contributions

CX, YF and YJ performed the experiments and statistical analysis. CX and WL conceived the project. WL supervised the project. YZ, CL and YZ provided suggestions. CX and WL wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chaohong Liu or Wanli Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Fang, Y., Yang, Z. et al. MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia 33, 710ā€“729 (2019). https://doi.org/10.1038/s41375-018-0244-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0244-4

This article is cited by

Search

Quick links