Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Myelodysplastic syndrome

An MDS-derived cell line and a series of its sublines serve as an in vitro model for the leukemic evolution of MDS

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelodysplasia and its clinical relevance. Blood. 2013;122:4021–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tohyama K, Tsutani H, Ueda T, Nakamura T, Yoshida Y. Establishment and characterization of a novel myeloid cell line from the bone marrow of a patient with the myelodysplastic syndrome. Br J Haematol. 1994;87:235–42.

    Article  PubMed  CAS  Google Scholar 

  3. Drexler HG, Dirks WG, Macleod RA. Many are called MDS cell lines: one is chosen. Leuk Res. 2009;33:1011–6.

    Article  PubMed  CAS  Google Scholar 

  4. Matsuoka A, Tochigi A, Kishimoto M, Nakahara T, Kondo T, Tsujioka T, et al. Lenalidomide induces cell death in an MDS-derived cell line with deletion of chromosome 5q by inhibition of cytokinesis. Leukemia. 2010;24:748–55.

    Article  PubMed  CAS  Google Scholar 

  5. Li L, Sheng Y, Li W, Hu C, Mittal N, Tohyama K, et al. beta-Catenin is a candidate therapeutic target for myeloid neoplasms with del(5q). Cancer Res. 2017;77:4116–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fang J, Liu X, Bolanos L, Barker B, Rigolino C, Cortelezzi A, et al. A calcium- and calpain-dependent pathway determines the response to lenalidomide in myelodysplastic syndromes. Nat Med. 2016;22:727–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature. 2015;523:183–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013;24:90–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hyoda T, Tsujioka T, Nakahara T, Suemori S, Okamoto S, Kataoka M, et al. Rigosertib induces cell death of a myelodysplastic syndrome-derived cell line by DNA damage-induced G2/M arrest. Cancer Sci. 2015;106:287–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tsujioka T, Yokoi A, Itano Y, Takahashi K, Ouchida M, Okamoto S, et al. Five-aza-2′-deoxycytidine-induced hypomethylation of cholesterol 25-hydroxylase gene is responsible for cell death of myelodysplasia/leukemia cells. Sci Rep. 2015;5:16709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hashizume R, Andor N, Ihara Y, Lerner R, Gan H, Chen X, et al. Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma. Nat Med. 2014;20:1394–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lehnertz B, Zhang YW, Boivin I, Mayotte N, Tomellini E, Chagraoui J, et al. H3(K27M/I) mutations promote context-dependent transformation in acute myeloid leukemia with RUNX1 alterations. Blood. 2017;130:2204–14.

    Article  PubMed  CAS  Google Scholar 

  13. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340:857–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Iwama A. Polycomb repressive complexes in hematological malignancies. Blood. 2017;130:23–9.

    Article  PubMed  CAS  Google Scholar 

  15. Mohammad F, Weissmann S, Leblanc B, Pandey DP, Hojfeldt JW, Comet I, et al. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nat Med. 2017;23:483–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Takanori Ueda (Fukui Medical University, Fukui, Japan) for his outstanding supervision and contribution to ethical approval, Drs. Hiroya Kirimura and Kengo Gotoh (Central Research Laboratories, Sysmex Corporation, Hyogo, Japan) for genetic analysis. The authors also thank Ms. Aki Kuyama for editorial assistance. This work was supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (KAKENHI) and Kawasaki Medical School Project Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaoru Tohyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kida, Ji., Tsujioka, T., Suemori, Si. et al. An MDS-derived cell line and a series of its sublines serve as an in vitro model for the leukemic evolution of MDS. Leukemia 32, 1846–1850 (2018). https://doi.org/10.1038/s41375-018-0189-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0189-7

This article is cited by

Search

Quick links