A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis


Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1–4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3–5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: IHC detection of viral antigens in CV-A16-infected hamsters (kinetic study).
Fig. 2: Approximate CNS distribution of viral antigen-positive neurons in CV-A16-infected hamsters.
Fig. 3: Mean viral titers in various tissues derived from CV-A16 infected hamsters from 1 to 4 dpi groups (Kinetic study).
Fig. 4: IHC and ISH detection in a CV-A16-infected index hamster at 5 dpi.
Fig. 5: IHC and ISH detection in index and contact hamsters.


  1. 1.

    Goto K, Sanefuji M, Kusuhara K, Nishimura Y, Shimizu H, Kira R, et al. Rhombencephalitis and Coxsackievirus A16. Emerg Infect Dis. 2009;15:1689–91.

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Eyckmans T, Wollants E, Janssens A, Schoemans H, Lagrou K, Wauters J, et al. Coxsackievirus A16 encephalitis during Obinutuzumab therapy, Belgium, 2013. Emerg Infect Dis. 2014;20:913–5.

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Zhang SY, Xu MY, Xu HM, Li XJ, Ding SJ, Wang XJ, et al. Immunologic characterization of cytokine responses to Enterovirus 71 and Coxsackievirus A16 infection in children. Medicine. 2015;94:e1137.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Luo M, Gong C, Zhang TG, Zhang ZJ. Study on the prevalence of acute flaccid paralysis and hand foot mouth disease in Beijing 2006–2008. Zhonghua Liu Xing Bing Xue Za Zhi. 2011;32:681–4.

    PubMed  Google Scholar 

  5. 5.

    Tao Z, Wang H, Li Y, Liu G, Xu A, Lin X, et al. Molecular epidemiology of human enterovirus associated with aseptic meningitis in Shandong Province, China, 2006-2012. PLoS ONE. 2014;9:e89766.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Legay F, Leveque N, Gacouin A, Tattevin P, Bouet J, Thomas R, et al. Fatal Coxsackievirus A-16 pneumonitis in adult. Emerg Infect Dis. 2007;13:1084–6.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Goldberg MF, McAdams AJ. Myocarditis possibly due to Coxsackie Group A, type 16, virus. J Pediatr. 1965;62:762–5.

    Google Scholar 

  8. 8.

    Wang CY, Li LuF, Wu MH, Lee CY, Huang LM. Fatal Coxsackievirus A16 infection. Pediatr Infect Dis J. 2004;23:275–6.

    PubMed  Google Scholar 

  9. 9.

    Wright HT Jr., Landing BH, Lennette EH, Mc AR. Fatal infection in an infant associated with Coxsackie virus group A, type 16. N Engl J Med. 1963;268:1041–4.

    PubMed  Google Scholar 

  10. 10.

    Yang WS. Clinical characteristic analysis of 104 cases of children severe hand, foot and mouth disease. Chongqing Med J. 2011;40:1722–7.

    Google Scholar 

  11. 11.

    Ong KC, Wong KT. Understanding Enterovirus 71 neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathol. 2015;25:614–24.

    CAS  PubMed  Google Scholar 

  12. 12.

    Mao Q, Wang Y, Gao R, Shao J, Yao X, Lang S, et al. A neonatal mouse model of Coxsackievirus A16 for vaccine evaluation. J Virol. 2012;86:11967–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Cai Y, Liu Q, Huang X, Li D, Ku Z, Zhang Y, et al. Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine. 2013;31:2215–21.

    CAS  PubMed  Google Scholar 

  14. 14.

    Li JP, Liao Y, Zhang Y, Wang JJ, Wang LC, Feng K, et al. Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. Dongwuxue Yanjiu. 2014;35:485–91.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu Q, Shi J, Huang X, Liu F, Cai Y, Lan K, et al. A murine model of Coxsackievirus A16 infection for anti-viral evaluation. Antiviral Res. 2014;105:26–31.

    CAS  PubMed  Google Scholar 

  16. 16.

    Caine EA, Fuchs J, Das SC, Partidos CD, Osorio JE. Efficacy of a trivalent hand, foot, and mouth disease vaccine against Enterovirus 71 and Coxsackieviruses A16 and A6 in mice. Viruses. 2015;7:5919–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sun YS, Li YJ, Xia Y, Xu F, Wang WW, Yang ZN, et al. Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep. 2016;6:34299.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Li J, Chang J, Liu X, Yang J, Guo H, Wei W, et al. Protection from lethal challenge in a neonatal mouse model by circulating recombinant form Coxsackievirus A16 vaccine candidates. J Gen Virol. 2014;95:1083–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hooi YT, Ong KC, Perera D, Wong KT. Pathological findings in a mouse model for Coxsackievirus A16 infection. Neurology Asia. 2015;20:343–7.

    Google Scholar 

  20. 20.

    Phyu WK, Ong KC, Wong KT. A consistent orally-infected hamster model for Enterovirus A71 encephalomyelitis demonstrates squamous lesions in the paws, skin and oral cavity reminiscent of hand-foot-and-mouth disease. PLoS ONE. 2016;11:e0147463.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Arita M, Nagata N, Sata T, Miyamura T, Shimizu H. Quantitative analysis of poliomyelitis-like paralysis in mice induced by a poliovirus replicon. J Gen Virol. 2006;87:3317–27.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kärber G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Archiv für experimentelle Pathologie und Pharmakologie. 1931;162:480–3.

    Google Scholar 

  23. 23.

    Tan SH, Ong KC, Wong KT. Enterovirus 71 can directly infect the brainstem via cranial nerves and infection can be ameliorated by passive immunization. J Neuropathol Exp Neurol. 2014;73:999–1008.

    CAS  PubMed  Google Scholar 

  24. 24.

    Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. Coxsackievirus A16 in a 1-day-old mouse model of central nervous system infection shows lower neurovirulence than Enterovirus A71. J Comp Pathol. 2020;176:19–32.

    CAS  PubMed  Google Scholar 

  25. 25.

    Cameron Smail R, O’Neill JH, Andresen D. Brainstem encephalitis caused by Coxsackie A16 virus in a rituximab-immunosuppressed patient. BMJ Case Rep. 2019;12:e230177.

    PubMed  Google Scholar 

  26. 26.

    Xu W, Liu CF, Yan L, Li JJ, Wang LJ, Qi Y, et al. Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virol J. 2012;9:8.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fan YK, Liu YP. Magnetic resonance imaging features of pediatric coxsackievirus encephalitis. J Belg Soc Radiol. 2019;103:6.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Brecht M, Jyoti R, McGuire W, Chauhan M. A case of neonatal Coxsackie B virus brainstem encephalitis. J Paediatr Child Health. 2010;46:699–701.

    PubMed  Google Scholar 

  29. 29.

    Lum LC, Chua KB, McMinn PC, Goh AY, Muridan R, Sarji SA, et al. Echovirus 7 associated encephalomyelitis. J Clin Virol. 2002;23:153–60.

    CAS  PubMed  Google Scholar 

  30. 30.

    Lian ZY, Li HH, Zhang B, Dong YH, Deng WX, Liu J, et al. Neuro-magnetic resonance imaging in hand, foot, and mouth disease: finding in 412 patients and prognostic features. J Comput Assist Tomogr. 2017;41:861–7.

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cree BC, Bernardini GL, Hays AP, Lowe G. A fatal case of Coxsackievirus B4 meningoencephalitis. Arch Neurol. 2003;60:107–12.

    PubMed  Google Scholar 

  32. 32.

    Shen WC, Chiu HH, Chow KC, Tsai CH. MR imaging findings of enteroviral encephaloymelitis: an outbreak in Taiwan. Am J Neuroradiol. 1999;20:1889–95.

    CAS  PubMed  Google Scholar 

  33. 33.

    Chen F, Li JJ, Liu T, Wen GQ, Xiang W. Clinical and neuroimaging features of Enterovirus71 related acute flaccid paralysis in patients with hand-foot-mouth disease. Asian Pac J Trop Med. 2013;6:68–72.

    PubMed  Google Scholar 

  34. 34.

    Li J, Chen F, Liu T, Wang L. MRI findings of neurological complications in hand-foot-mouth disease by Enterovirus 71 infection. Int J Neurosci. 2012;122:338–44.

    PubMed  Google Scholar 

  35. 35.

    Wong KT, Munisamy B, Ong KC, Kojima H, Noriyo N, Chua KB, et al. The distribution of inflammation and virus in human Enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. J Neuropathol Exp Neurol. 2008;67:162–9.

    PubMed  Google Scholar 

  36. 36.

    Xing J, Liu D, Shen S, Su Z, Zhang L, Duan Y, et al. Pathologic studies of fatal encephalomyelitis in children caused by Enterovirus 71. Am J Clin Pathol. 2016;146:95–106.

    CAS  PubMed  Google Scholar 

  37. 37.

    He Y, Ong KC, Gao Z, Zhao X, Anderson VM, McNutt MA, et al. Tonsillar crypt epithelium is an important extra-central nervous system site for viral replication in EV71 encephalomyelitis. Am J Pathol. 2014;184:714–20.

    CAS  PubMed  Google Scholar 

  38. 38.

    Ong KC, Badmanathan M, Devi S, Leong KL, Cardosa MJ, Wong KT. Pathologic characterization of a murine model of human Enterovirus 71 encephalomyelitis. J Neuropathol Exp Neurol. 2008;67:532–42.

    PubMed  Google Scholar 

  39. 39.

    Muehlenbachs A, Bhatnagar J, Zaki SR. Tissue tropism, pathology and pathogenesis of enterovirus infection. J Pathol. 2015;235:217–28.

    PubMed  Google Scholar 

  40. 40.

    Phyu WK, Ong KC, Kong CK, Alizan AK, Ramanujam TM, Wong KT. Squamous epitheliotropism of Enterovirus A71 in human epidermis and oral mucosa. Sci Rep. 2017;7:45069.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ooi MH, Solomon T, Podin Y, Mohan A, Akin W, Yusuf MA, et al. Evaluation of different clinical sample types in diagnosis of human Enterovirus 71-associated hand-foot-and-mouth disease. J Clin Microbiol. 2007;45:1858–66.

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Chen X, Tan X, Li J, Jin Y, Gong L, Hong M, et al. Molecular epidemiology of Coxsackievirus A16: intratype and prevalent intertype recombination identified. PLoS ONE. 2013;8:e82861.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Pallansch MA, Ross RP. Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe David Mahan, Howley P.M., (eds.) Fields’ virology. 1.5th ed. USA: Lippincott, Williams & Wilkins; 2007. p 723–75.

    Google Scholar 

  44. 44.

    Chen KT, Lee TC, Chang HL, Yu MC, Tang LH. Human Enterovirus 71 disease: clinical features, epidemiology, virology, and management. Open Epidemiol J. 2008;1:10–6.

    Google Scholar 

  45. 45.

    Hoang CQ, Nguyen TTT, Ho NX, Nguyen HD, Nguyen AB, Nguyen THT, et al. Transmission and serotype features of hand foot mouth disease in household contacts in Dong Thap, Vietnam. BMC Infect Dis. 2019;19:933.

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Fredricks DN, Relman DA. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin Microbiol Rev. 1996;9:18–33.

    CAS  PubMed  Google Scholar 

  47. 47.

    Phyu WK, Ong KC, Wong KT. Modelling person-to-person transmission in an Enterovirus A71 orally infected hamster model of hand-foot-and-mouth disease and encephalomyelitis. Emerg Microb Infect. 2017;6:e62.

    CAS  Google Scholar 

  48. 48.

    Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral Enterovirus 71 infection model with central nervous system involvement. J Gen Virol. 2004;85:69–77.

    CAS  PubMed  Google Scholar 

  49. 49.

    Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, Yan JJ, et al. A mouse-adapted Enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol. 2004;78:7916–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Yang X, Li G, Wen K, Bui T, Liu F, Kocher J, et al. A neonatal gnotobiotic pig model of human Enterovirus 71 infection and associated immune responses. Emerg Microb Infect. 2014;3:e35.

    CAS  Google Scholar 

  51. 51.

    Tam PE. Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease. Viral Immunol. 2006;19:133–46.

    CAS  PubMed  Google Scholar 

  52. 52.

    Kearney MT, Cotton JM, Richardson PJ, Shah AM. Viral myocarditis and dilated cardiomyopathy: mechanisms, manifestations, and management. Postgrad Med J. 2001;77:4–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Liu L, Zhao H, Zhang Y, Wang J, Che Y, Dong C, et al. Neonatal rhesus monkey is a potential animal model for studying pathogenesis of EV71 infection. Virology. 2011;412:91–100.

    CAS  PubMed  Google Scholar 

  54. 54.

    Grodums EI, Dempster G. Changes in brown adipose tissues and Coxsackievirus B pathogenesis in mice on acute and chronic cold exposure. Can J Microbiol. 1970;16:833–9.

    CAS  PubMed  Google Scholar 

  55. 55.

    Li Z, Liu X, Wang S, Li J, Hou M, Liu G, et al. Identification of a nucleotide in 5’ untranslated region contributing to virus replication and virulence of Coxsackievirus A16. Sci Rep. 2016;6:20839.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This study was supported by the High Impact Research Grant (H20001-E00004), Fundamental Research Grant Scheme (FP038/2015A) from the Ministry of Higher Education, Malaysia Government, and Postgraduate Research Grant (PG159-2015A) from University of Malaya.

Author information



Corresponding author

Correspondence to Kum Thong Wong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hooi, Y.T., Ong, K.C., Tan, S.H. et al. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. Lab Invest (2020). https://doi.org/10.1038/s41374-020-0456-x

Download citation