Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting optimal protein delivery in parenteral and enteral nutrition for preterm infants: a review of randomized, controlled trials

Abstract

Close attention to nutritional management is essential for optimizing growth and neurodevelopment of the preterm infant. Protein intake and the protein to energy ratio are the main determinants of growth and body composition. Yet large, multi-center, randomized controlled trials are lacking to guide protein delivery for the preterm infant. Until these studies are pursued, smaller trials must be used to inform clinical practice. This review summarizes the randomized controlled trials that have been performed to test the impact of higher vs. lower protein delivery to the preterm infant. We consider the trials that varied protein delivery rates during parenteral and enteral phases of nutrition. Considerable heterogeneity exists across study designs. Still, cumulative evidence from these trials provides a framework for current recommendations for protein intake in the preterm infant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Amino acid utilization by the preterm infant.

Similar content being viewed by others

References

  1. Ziegler EE. Meeting the nutritional needs of the low-birth-weight infant. Ann Nutr Metab. 2011;58:8–18.

    Article  CAS  PubMed  Google Scholar 

  2. Bell KA, Matthews LG, Cherkerzian S, Palmer C, Drouin K, Pepin HL, et al. Associations of growth and body composition with brain size in preterm infants. J Pediatr. 2019;214:20–6.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bell KA, Matthews LG, Cherkerzian S, Prohl AK, Warfield SK, Inder TE, et al. Associations of body composition with regional brain volumes and white matter microstructure in very preterm infants. Arch Dis Child Fetal Neonatal Ed. 2022;107:533–8.

  4. Coviello C, Keunen K, Kersbergen KJ, Groenendaal F, Leemans A, Peels B, et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr Res. 2018;83:102–10.

    Article  PubMed  Google Scholar 

  5. Poindexter BB, Langer JC, Dusick AM, Ehrenkranz RA, National Institute of Child H, Human Development Neonatal Research N. Early provision of parenteral amino acids in extremely low birth weight infants: relation to growth and neurodevelopmental outcome. J Pediatr. 2006;148:300–5.

    Article  CAS  PubMed  Google Scholar 

  6. Stephens BE, Walden RV, Gargus RA, Tucker R, McKinley L, Mance M, et al. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics. 2009;123:1337–43.

    Article  PubMed  Google Scholar 

  7. Yang J, Chang SS, Poon WB. Relationship between amino acid and energy intake and long-term growth and neurodevelopmental outcomes in very low birth weight infants. J Parenter Enter Nutr. 2016;40:820–6.

    Article  CAS  Google Scholar 

  8. American Academy of Pediatrics Committee on Nutrition. Nutritional needs of low-birth-weight infants. Pediatrics 1985;75:976–86.

    Article  Google Scholar 

  9. Embleton ND, Moltu SJ, Lapillonne A, van den Akker CHP, Carnielli V, Fusch C, et al. Enteral nutrition in preterm infants (2022): a position paper from the ESPGHAN committee on nutrition and invited experts. J Pediatr Gastroenterol Nutr. 2023;76:248–68.

    Article  PubMed  Google Scholar 

  10. Robinson DT, Calkins KL, Chen Y, Cober MP, Falciglia GH, Church DD, et al. Guidelines for parenteral nutrition in preterm infants: the American Society for parenteral and enteral nutrition. J Parenter Enter Nutr. 2023;47:830–58.

    Article  Google Scholar 

  11. van Goudoever JB, Carnielli V, Darmaun D, Sainz de Pipaon M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: amino acids. Clin Nutr. 2018;37:2315–23.

    Article  PubMed  Google Scholar 

  12. Ziegler EE. Protein requirements of very low birth weight infants. J Pediatr Gastroenterol Nutr. 2007;45:S170–S4.

    Article  CAS  PubMed  Google Scholar 

  13. Ibrahim HM, Jeroudi MA, Baier RJ, Dhanireddy R, Krouskop RW. Aggressive early total parental nutrition in low-birth-weight infants. J Perinatol. 2004;24:482–6.

    Article  PubMed  Google Scholar 

  14. te Braake FW, van den Akker CH, Wattimena DJ, Huijmans JG, van Goudoever JB. Amino acid administration to premature infants directly after birth. J Pediatr. 2005;147:457–61.

    Article  Google Scholar 

  15. Thureen PJ, Melara D, Fennessey PV, Hay WW. Effect of low versus high intravenous amino acid intake on very low birth weight infants in the early neonatal period. Pediatr Res. 2003;53:24–32.

    Article  CAS  PubMed  Google Scholar 

  16. van den Akker CH, te Braake FW, Wattimena DJ, Voortman G, Schierbeek H, Vermes A, et al. Effects of early amino acid administration on leucine and glucose kinetics in premature infants. Pediatr Res. 2006;59:732–5.

    Article  PubMed  Google Scholar 

  17. Kennaugh JM, Bell AW, Teng C, Meschia G, Battaglia FC. Ontogenetic changes in the rates of protein synthesis and leucine oxidation during fetal life. Pediatr Res. 1987;22:688–92.

    Article  CAS  PubMed  Google Scholar 

  18. Lemons JA, Adcock EW 3rd, Jones MD Jr, Naughton MA, Meschia G, Battaglia FC. Umbilical uptake of amino acids in the unstressed fetal lamb. J Clin Investig. 1976;58:1428–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Embleton ND, van den Akker CHP. Protein intakes to optimize outcomes for preterm infants. Semin Perinatol. 2019;43:151154.

    Article  PubMed  Google Scholar 

  20. Morgan C. Early amino acid administration in very preterm infants: Too little, too late or too much, too soon? Semin Fetal Neonatal Med. 2013;18:160–5.

  21. Ramel SE, Brown LD, Georgieff MK. The impact of neonatal illness on nutritional requirements-one size does not fit all. Curr Pediatr Rep. 2014;2:248–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Embleton ND, Van Den Akker CH. Early parenteral amino acid intakes in preterm babies: does NEON light the way? Arch Dis Child Fetal Neonatal Ed. 2018;103:F92–4.

    Article  PubMed  Google Scholar 

  23. Martin CR. Parenteral protein in extremely preterm infants - more is not better. N. Engl J Med. 2022;387:1712–3.

    Article  PubMed  Google Scholar 

  24. Robinson DT, Taylor SN, Moya F. Preterm infant nutrition: considerations for infants at risk of refeeding syndrome. J Perinatol. 2023;43:120–3.

    Article  PubMed  Google Scholar 

  25. Ziegler EE, O’Donnell AM, Nelson SE, Fomon SJ. Body composition of the reference fetus. Growth 1976;40:329–41.

    CAS  PubMed  Google Scholar 

  26. Kashyap S, Forsyth M, Zucker C, Ramakrishnan R, Dell RB, Heird WC. Effects of varying protein and energy intakes on growth and metabolic response in low birth weight infants. J Pediatr. 1986;108:955–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kashyap S, Schulze KF, Forsyth M, Zucker C, Dell RB, Ramakrishnan R, et al. Growth, nutrient retention, and metabolic response in low birth weight infants fed varying intakes of protein and energy. J Pediatr. 1988;113:713–21.

    Article  CAS  PubMed  Google Scholar 

  28. Rigo J. Protein, amino acid and other nitrogen compounds. In: Tsang RC, Uauy R, Koletzko B, Zlotkin S, editors. Nutrition of the Preterm Infant. Cincinnati, OH: Digital Educational Publishing; 2005. p. 45–80.

  29. Ziegler EE Protein requirements of preterm infants. In: Fomon SJ, Heird WC, editors. Energy and Protein Needs During Infancy. New York: Academic Press; 1986. p. 69-85.

  30. Bellagamba MP, Carmenati E, D’Ascenzo R, Malatesta M, Spagnoli C, Biagetti C, et al. One extra gram of protein to preterm infants from birth to 1800 g: a single-blinded randomized clinical trial. J Pediatr Gastroenterol Nutr. 2016;62:879–84.

    Article  PubMed  Google Scholar 

  31. Bulbul A, Okan F, Bulbul L, Nuhoglu A. Effect of low versus high early parenteral nutrition on plasma amino acid profiles in very low birth-weight infants. J Matern Fetal Neonatal Med. 2012;25:770–6.

    Article  CAS  PubMed  Google Scholar 

  32. Burattini I, Bellagamba MP, Spagnoli C, D’Ascenzo R, Mazzoni N, Peretti A, et al. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: a randomized clinical trial. J Pediatr. 2013;163:1278-82.e1.

  33. Clark RH, Chace DH, Spitzer AR. Effects of two different doses of amino acid supplementation on growth and blood amino acid levels in premature neonates admitted to the neonatal intensive care unit: a randomized, controlled trial. Pediatrics. 2007;120:1286–96.

    Article  PubMed  Google Scholar 

  34. Li Y, Sun Z, Hu Y, Li B, Bu X, Luo Y, et al. Early administration of amino acids with different doses in low birth weight premature infants. J Res Med Sci. 2020;25:49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan MJ, Cooke RW. Improving head growth in very preterm infants-a randomised controlled trial I: neonatal outcomes. Arch Dis Child Fetal Neonatal Ed. 2008;93:F337–41.

    Article  CAS  PubMed  Google Scholar 

  36. Tan M, Abernethy L, Cooke R. Improving head growth in preterm infants-a randomised controlled trial II: MRI and developmental outcomes in the first year. Arch Dis Child Fetal Neonatal Ed. 2008;93:F342–6.

    Article  CAS  PubMed  Google Scholar 

  37. Can E, Bulbul A, Uslu S, Comert S, Bolat F, Nuhoglu A. Effects of aggressive parenteral nutrition on growth and clinical outcome in preterm infants. Pediatr Int. 2012;54:869–74.

    Article  CAS  PubMed  Google Scholar 

  38. Vlaardingerbroek H, Vermeulen MJ, Rook D, van den Akker CH, Dorst K, Wattimena JL, et al. Safety and efficacy of early parenteral lipid and high-dose amino acid administration to very low birth weight infants. J Pediatr. 2013;163:638–44.e1-5.

    Article  CAS  PubMed  Google Scholar 

  39. Roelants JA, Vlaardingerbroek H, van den Akker CHP, de Jonge RCJ, van Goudoever JB, Vermeulen MJ. Two-Year Follow-up of a randomized controlled nutrition intervention trial in very low-birth-weight infants. J Parenter Enter Nutr. 2018;42:122–31.

    Article  CAS  Google Scholar 

  40. Morgan C, McGowan P, Herwitker S, Hart AE, Turner MA. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics. 2014;133:e120–8.

    Article  PubMed  Google Scholar 

  41. Moltu SJ, Blakstad EW, Strømmen K, Almaas AN, Nakstad B, Rønnestad A, et al. Enhanced feeding and diminished postnatal growth failure in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 2014;58:344–51.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Scattolin S, Gaio P, Betto M, Palatron S, De Terlizzi F, Intini F, et al. Parenteral amino acid intakes: possible influences of higher intakes on growth and bone status in preterm infants. J Perinatol. 2013;33:33–9.

    Article  CAS  PubMed  Google Scholar 

  43. Blanco CL, Falck A, Green BK, Cornell JE, Gong AK. Metabolic responses to early and high protein supplementation in a randomized trial evaluating the prevention of hyperkalemia in extremely low birth weight infants. J Pediatr. 2008;153:535–40.

    Article  CAS  PubMed  Google Scholar 

  44. Blanco CL, Gong AK, Schoolfield J, Green BK, Daniels W, Liechty EA, et al. Impact of early and high amino acid supplementation on ELBW infants at 2 years. J Pediatr Gastroenterol Nutr. 2012;54:601–7.

    Article  CAS  PubMed  Google Scholar 

  45. Uthaya S, Liu X, Babalis D, Doré CJ, Warwick J, Bell J, et al. Nutritional evaluation and optimisation in neonates: a randomized, double-blind controlled trial of amino acid regimen and intravenous lipid composition in preterm parenteral nutrition. Am J Clin Nutr. 2016;103:1443–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balakrishnan M, Jennings A, Przystac L, Phornphutkul C, Tucker R, Vohr B, et al. Growth and neurodevelopmental outcomes of early, high-dose parenteral amino acid intake in very low birth weight infants: a randomized controlled trial. J Parenter Enter Nutr. 2018;42:597–606.

    Article  CAS  Google Scholar 

  47. Bloomfield FH, Jiang Y, Harding JE, Crowther CA, Cormack BE. Early amino acids in extremely preterm infants and neurodisability at 2 Years. N Engl J Med. 2022;387:1661–72.

    Article  CAS  PubMed  Google Scholar 

  48. Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J Nutr. 2006;136:207S–11S.

    Article  CAS  PubMed  Google Scholar 

  49. Liechty EA, Barone S, Nutt M. Effect of maternal fasting on ovine fetal and maternal branched-chain amino acid transaminase activities. Biol Neonate. 1987;52:166–73.

    Article  CAS  PubMed  Google Scholar 

  50. Moltu SJ, Strømmen K, Blakstad EW, Almaas AN, Westerberg AC, Brække K, et al. Enhanced feeding in very-low-birth-weight infants may cause electrolyte disturbances and septicemia-a randomized, controlled trial. Clin Nutr. 2013;32:207–12.

    Article  CAS  PubMed  Google Scholar 

  51. Strommen K, Haag A, Moltu SJ, Veierod MB, Blakstad EW, Nakstad B, et al. Enhanced nutrient supply to very low birth weight infants is associated with higher blood amino acid concentrations and improved growth. Clin Nutr ESPEN. 2017;18:16–22.

  52. Blanco CL, Gong AK, Green BK, Falck A, Schoolfield J, Liechty EA. Early changes in plasma amino acid concentrations during aggressive nutritional therapy in extremely low birth weight infants. J Pediatr. 2011;158:543–8.e1.

    Article  CAS  PubMed  Google Scholar 

  53. Arnold M, Adamkin D, Radmacher P. Improving fortification with weekly analysis of human milk for VLBW infants. J Perinatol. 2017;37:194–6.

    Article  CAS  PubMed  Google Scholar 

  54. de Halleux V, Rigo J. Variability in human milk composition: benefit of individualized fortification in very-low-birth-weight infants. Am J Clin Nutr. 2013;98:529s–35s.

    Article  PubMed  Google Scholar 

  55. Radmacher PG, Lewis SL, Adamkin DH. Individualizing fortification of human milk using real time human milk analysis. J Neonatal Perinat Med. 2013;6:319–23.

    Article  CAS  Google Scholar 

  56. Arslanoglu S, Moro GE, Ziegler EE. Adjustable fortification of human milk fed to preterm infants: does it make a difference? J Perinatol. 2006;26:614–21.

    Article  CAS  PubMed  Google Scholar 

  57. Miller J, Makrides M, Gibson RA, McPhee AJ, Stanford TE, Morris S, et al. Effect of increasing protein content of human milk fortifier on growth in preterm infants born at <31 wk gestation: a randomized controlled trial. Am J Clin Nutr. 2012;95:648–55.

    Article  CAS  PubMed  Google Scholar 

  58. Reid J, Makrides M, McPhee AJ, Stark MJ, Miller J, Collins CT. The effect of increasing the protein content of human milk fortifier to 1.8 g/100 mL on growth in preterm infants: a randomised controlled trial. Nutrients. 2018;10:634.

  59. Maas C, Mathes M, Bleeker C, Vek J, Bernhard W, Wiechers C, et al. Effect of increased enteral protein intake on growth in human milk-fed preterm infants: a randomized clinical trial. JAMA Pediatr. 2017;171:16–22.

    Article  PubMed  Google Scholar 

  60. Porcelli P, Schanler R, Greer F, Chan G, Gross S, Mehta N, et al. Growth in human milk-Fed very low birth weight infants receiving a new human milk fortifier. Ann Nutr Metab. 2000;44:2–10.

    Article  CAS  PubMed  Google Scholar 

  61. Moya F, Sisk PM, Walsh KR, Berseth CL. A new liquid human milk fortifier and linear growth in preterm infants. Pediatrics. 2012;130:e928–e35.

    Article  PubMed  Google Scholar 

  62. Kim JH, Chan G, Schanler R, Groh-Wargo S, Bloom B, Dimmit R, et al. Growth and tolerance of preterm infants fed a new extensively hydrolyzed liquid human milk fortifier. J Pediatr Gastroenterol Nutr. 2015;61:665–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rigo J, Hascoët JM, Billeaud C, Picaud JC, Mosca F, Rubio A, et al. Growth and nutritional biomarkers of preterm infants fed a new powdered human milk fortifier: a randomized trial. J Pediatr Gastroenterol Nutr. 2017;65:e83–e93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Salas AA, Jerome M, Finck A, Razzaghy J, Chandler-Laney P, Carlo WA. Body composition of extremely preterm infants fed protein-enriched, fortified milk: a randomized trial. Pediatr Res. 2022;91:1231–7.

  65. Biasini A, Monti F, Laguardia MC, Stella M, Marvulli L, Neri E. High protein intake in human/maternal milk fortification for ≤1250 gr infants: intrahospital growth and neurodevelopmental outcome at two years. Acta Biomed. 2018;88:470–6.

    PubMed  Google Scholar 

  66. Dogra S, Thakur A, Garg P, Kler N. Effect of differential enteral protein on growth and neurodevelopment in infants <1500 g: a randomized controlled trial. J Pediatr Gastroenterol Nutr. 2017;64:e126–e32.

    Article  CAS  PubMed  Google Scholar 

  67. Osborn DA, Schindler T, Jones LJ, Sinn JK, Bolisetty S. Higher versus lower amino acid intake in parenteral nutrition for newborn infants. Cochrane database Syst Rev. 2018;3:Cd005949.

    PubMed  Google Scholar 

  68. Kim DH, Lee NM, Kim SY, Yi DY, Yun SW, Chae SA, et al. Effectiveness of prealbumin as an indicator of growth in neonates. Medicine. 2021;100:e27603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pfister KM, Ramel SE. Linear growth and neurodevelopmental outcomes. Clin Perinatol. 2014;41:309–21.

    Article  PubMed  Google Scholar 

  70. Belfort M, Cherkerzian S, Bell K, Soldateli B, Cordova Ramos E, Palmer C, et al. Macronutrient intake from human milk, infant growth, and body composition at term equivalent age: a longitudinal study of hospitalized very preterm infants. Nutrients. 2020;12:2249.

  71. Khaira S, Pert A, Farrell E, Sibley C, Harvey-Wilkes K, Nielsen HC, et al. Expressed breast milk analysis: role of individualized protein fortification to avoid protein deficit after preterm birth and improve infant outcomes. Front Pediatr. 2021;9:652038.

    Article  PubMed  Google Scholar 

  72. Miller M, Vaidya R, Rastogi D, Bhutada A, Rastogi S. From parenteral to enteral nutrition: a nutrition-based approach for evaluating postnatal growth failure in preterm infants. J Parenter Enter Nutr. 2014;38:489–97.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Kendra Hendrickson, MS, RD, CNSC, CSP and Susan Marshall, MS, RD, CSPCC, CNSC for their nutritional expertise during preparation of this manuscript.

Funding

The Ludeman Family Center for Women’s Health Research, University of Colorado Anschutz Medical Campus (LDB). The content of this manuscript does not represent the official views of the funding organizations.

Author information

Authors and Affiliations

Authors

Contributions

LDB, DTR and JS performed the literature review; LDB drafted the manuscript; LDB, DTR and JS edited the manuscript and approved the final version.

Corresponding author

Correspondence to Laura D. Brown.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, L.D., Stremming, J. & Robinson, D.T. Targeting optimal protein delivery in parenteral and enteral nutrition for preterm infants: a review of randomized, controlled trials. J Perinatol (2023). https://doi.org/10.1038/s41372-023-01847-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-023-01847-6

Search

Quick links