Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alloimmune hemolytic disease of the fetus and newborn: genetics, structure, and function of the commonly involved erythrocyte antigens

Abstract

Hemolytic disease of the fetus and newborn (HDFN) can occur when a pregnant woman has antibody directed against an erythrocyte surface antigen expressed by her fetus. This alloimmune disorder is restricted to situations where transplacental transfer of maternal antibody to the fetus occurs, and binds to fetal erythrocytes, and significantly shortens the red cell lifespan. The pathogenesis of HDFN involves maternal sensitization to erythrocyte “non-self” antigens (those she does not express). Exposure of a woman to a non-self-erythrocyte antigen principally occurs through either a blood transfusion or a pregnancy where paternally derived erythrocyte antigens, expressed by her fetus, enter her circulation, and are immunologically recognized as foreign. This review focuses on the genetics, structure, and function of the erythrocyte antigens that are most frequently involved in the pathogenesis of alloimmune HDFN. By providing this information we aim to convey useful insights to clinicians caring for patients with this condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic structure of the erythrocyte surface antigens that are most commonly involved in moderate to severe HDFN.
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kark Landsteiner receivinthe 1930 Nobel Prize in Medicine. https://www.rockefeller.edu/our-scientists/karl-landsteiner/2554-nobel-prize/.

  2. Diamond LK, Blackfan KD, Baty JM. Erythroblastosis fetalis and its association with universal edema of the fetus, icterus gravis neonatorum and anemia of the newborn. J Pediatr. 1932;1:269–309.

    Article  Google Scholar 

  3. Landsteiner K, Wiener AS. An agglutinable factor in human blood recognized by immune sera for Rhesus blood. Proc Soc Exp Biol Med. 1940;43:223.

    Article  CAS  Google Scholar 

  4. Mollison PL, Cutbush M. Hemolytic disease of the newborn; criteria of severity. Br Med J. 1949;4594:123–30.

    Article  Google Scholar 

  5. Freda VJ, Gorman JG, Pollack W. Rh factor: prevention of isoimmunization and clinical trial on mothers. Science. 1966;151:828–30.

    Article  CAS  PubMed  Google Scholar 

  6. Freda VJ, Gorman JG, Pollack W, Bowe E. Prevention of Rh hemolytic disease–ten years’ clinical experience with Rh immune globulin. N Engl J Med. 1975;292:1014–6.

    Article  CAS  PubMed  Google Scholar 

  7. Freda VJ, Gorman JG, Pollack W. Prevention of Rh-hemolytic disease with Rh-immune globulin. Am J Ob Gyn. 1977;128:456–60.

    Article  CAS  Google Scholar 

  8. Zipursky A, Paul VK. The global burden of Rh disease. Arch Dis Child Fetal Neonatal Ed. 2011;96:F84–5.

    Article  PubMed  Google Scholar 

  9. Moise KJ. Fetal anemia due to non-Rhesus-D red-cell alloimmunization. Semin Fetal Neonatal Med. 2008;13:207–14.

    Article  PubMed  Google Scholar 

  10. van Kamp IL, Klumper FJ, Meerman RH, Oepkes D, Scherjon SA, Kanhai HH. Treatment of fetal anemia due to red cell alloimmunization with intrauterine transfusions in the Netherlands, 1988-1999. Acta Obstet Gynecol Scand. 2004;83:731–7.

    Article  PubMed  Google Scholar 

  11. de Haas M, Thurik FF, Koelewijn JM, van der Schoot CE. Haemolytic disease of the fetus and newborn. Vox Sang. 2015;109:99–113.

    Article  PubMed  Google Scholar 

  12. Yu D, Ling LE, Krumme AA, Tjoa ML, Moise KJ Jr. Live birth prevalence of hemolytic disease of the fetus and newborn in the United States from 1996 to 2010. AJOG Glob Rep. 2023;3:100203.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Christensen RD, Bahr TM, Wong RJ, Vreman HJ, Bhutani VK, Stevenson DKA “gold standard” test for diagnosing and quantifying hemolysis in neonates and infants. J Perinatol. 2023. https://doi.org/10.1038/s41372-023-01730-4.

  14. Thiagarajan P, Parker CJ, Prchal JT. How do red blood cells die? Front Physiol. 2021;12:65539314. Mar 15

    Article  Google Scholar 

  15. Cooper RA, Shattil SJH. Mechanisms of hemolysis - the minimal red cell defect. N Eng J Med. 1971;285:1514–20.

    Article  CAS  Google Scholar 

  16. Quigley JG, Means Jr RT, Glader B The birth, life, and death of red blood cells; erythropoiesis, the mature red blood cell, and cell destruction. In Wintrobe’s Clinical Hematololgy, 14th Edition, Greer JP, Rodgers GM, Glader B, Arber DA, Means Je RT, List AF, Applebaum FR, Dispenziere A, Fehniger TA, eds., Wolters Kluwer, Philadelphia, PA, 2019; pp 116-7.

  17. Urbaniak SJ, Greiss MA. RhD hemolytic disease of the fetus and the newborn. Blood Rev. 2000;14:44–61.

    Article  CAS  PubMed  Google Scholar 

  18. Durand JK, Willis MS. Karl Landsteiner, MD: Transfusion Medicine. Lab Med. 2010;41:53–5.

    Article  Google Scholar 

  19. Chérif-Zahar, B, Mattéi MG, Le Van Kim C. Localization of the human Rh blood group gene structure to chromosome region 1p34.3-1p36.1 by in situ hybridization. Hum Genet. 1991;86:398–400.

    Article  PubMed  Google Scholar 

  20. Dean L Blood Groups and Red Cell Antigens [Internet]. Bethesda (MD): National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK2275/.

  21. Vallese F, Kim K, Yen LY, Johnston JD, Noble AJ, Calì T, et al. Architecture of the human erythrocyte ankyrin-1 complex. Nat Struct Mol Biol. 2022;29:706–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lieberman L, Callum J, Cohen R, Cserti-Gazdewich C, Ladhani NNN, Buckstein J, et al. Impact of red blood cell alloimmunization on fetal and neonatal outcomes: A single center cohort study. Transfusion. 2020;60:2537–46.

    Article  CAS  PubMed  Google Scholar 

  23. Ree IMC, Besuden CFJ, Wintjens VEHJ, Verweij JEJT, Oepkes D, de Haas M, et al. Exchange transfusions in severe Rh-mediated alloimmune haemolytic disease of the foetus and newborn: a 20-year overview on the incidence, associated risks, and outcome. Vox Sang. 2021;116:990–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. De Winter DP, Hulzebos C, Van ‘t Oever RM, DeHaas M, Verweij EJT, Lopriore E. History and current standard of postnatal management in hemolytic disease of the fetus and newborn. Eur J Pediatr. 2023;182:489–500.

    Article  PubMed  Google Scholar 

  25. Hackney DN, Knudtson EJ, Rossi KQ, Krugh D, O’Shaughnessy RW. Management of pregnancies complicated by anti-c isoimmunization. Obstet Gynecol. 2004;103:24–30.

    Article  CAS  PubMed  Google Scholar 

  26. Appelman Z, Lurie S, Juster A, Borenstein R. Severe hemolytic disease of the newborn due to anti-c. Int J Gynaecol Obstet. 1990;33:73–5.

    Article  CAS  PubMed  Google Scholar 

  27. Bowman JM, Pollock J. Maternal CW alloimmunization. Vox Sang. 1993;64:226–30.

    CAS  PubMed  Google Scholar 

  28. Finney RD, Blue AM, Willoughby ML. Haemolytic disease of the newborn caused by the rare Rhesus antibody anti-CX. Vox Sang. 1973;25:39–42.

    CAS  PubMed  Google Scholar 

  29. Bowman JM, Pollock JM, Manning FA, Harman CR. Severe anti-C hemolytic disease of the newborn. Am J Obstet Gynecol. 1992;166:1239–43.

    Article  CAS  PubMed  Google Scholar 

  30. Joy SD, Rossi KQ, Krugh D, O’Shaughnessy RW. Management of pregnancies complicated by anti-E alloimmunization. Obstet Gynecol. 2005;105:24–8.

    Article  PubMed  Google Scholar 

  31. Chapman J, Waters A. Haemolytic disease of the newborn due to Rhesus anti-e antibody. Vox Sang. 1981;41:45–7.

    CAS  PubMed  Google Scholar 

  32. The ABO blood group - Blood Groups and Red Cell Antigens - NCBI Bookshelf (nih.gov).

  33. Dean L ABO Blood Group. 2012 Oct 1 [updated 2015 Jul 27]. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012.

  34. Scharberg EA, Olsen C, Bugert P. The H blood group system. Immunohematology. 2016;32:112–8.

    Article  PubMed  Google Scholar 

  35. Bullock T, Win N, Jackson B, Sivarajan S, Penny J, Mir N. Bombay phenotype (Oh) and high-titer anti-H in pregnancy: two case reports and a review of the literature. Transfusion. 2018;58:2766–72.

    Article  PubMed  Google Scholar 

  36. Storch EK, Rogerson B, Eder AF. Trend in ABO-incompatible RBC transfusion-related fatalities reported to the FDA, 2000-2019. Transfusion 2020;60:2867–75.

    Article  PubMed  Google Scholar 

  37. Branch DR. Anti-A and anti-B: what are they and where do they come from? Transfusion. 2015;55:S74–9.

    Article  CAS  PubMed  Google Scholar 

  38. Krog GR, Lorenzen H, Clausen FB, Dziegiel MH. Secretor status of blood group O mothers is associated with development of ABO haemolytic disease in the newborn. Vox Sang. 2023;118:402–6.

    Article  CAS  PubMed  Google Scholar 

  39. Watchko JF. ABO hemolytic disease of the newborn: a need for clarity and consistency in diagnosis. J Perinatol. 2023;43:242–7.

    Article  CAS  PubMed  Google Scholar 

  40. Routray SS, Mishra D, Kanungo GN, Behera R. Hemolytic disease of newborn due to ABO incompatibility between B blood group mother and A blood group neonate. J Lab Physicians. 2022;15:146–8.

    PubMed  PubMed Central  Google Scholar 

  41. Christensen RD, Baer VL, MacQueen BC, O’Brien EA, Ilstrup SJ. ABO hemolytic disease of the fetus and newborn: thirteen years of data after implementing a universal bilirubin screening and management program. J Perinatol. 2018;38:517–25.

    Article  CAS  PubMed  Google Scholar 

  42. Baer VL, Hulse W, Bahr TM, Ilstrup SJ, Christensen RD. Absence of severe neonatal ABO hemolytic disease at Intermountain Healthcare. Why? J Perinatol. 2020;40:352–3.

    Article  PubMed  Google Scholar 

  43. Miller DF, Petrie SJ. Fatal erythroblastosis fetalis secondary to ABO incompatibility. Report of a case. Obstet Gynecol. 1963;22:773–7.

    CAS  PubMed  Google Scholar 

  44. Gilja BK, Shah VP. Hydrops fetalis due to ABO incompatibility. Clin Pediatr. 1988;27:210–2.

    Article  CAS  Google Scholar 

  45. Sherer DM, Abramozicz JS, Ryan RM, Sheils LA, Blumberg N, Woods JR Jr. Severe fetal hydrops resulting from ABO incompatibility. Obstet Gynecol. 1991;78:897–9.

    CAS  PubMed  Google Scholar 

  46. Stiller RJ, Herzlinger R, Siegel S, Whetham JVG. Fetal ascites associated with ABO incompatibility: Case report and review of the literature. Am J Obstet Gyenecol. 1996;175:1371–2.

    Article  CAS  Google Scholar 

  47. McDonnell M, Hannam S, Devane SP. Hydrops fetalis due to ABO incompatibility. Arch Dis Child Fetal Neonatal Ed. 1998;78:F220–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tiker F, Gurakan B, Tarcan A, Ozbek N. Fatal course of ABO hemolytic disease associated with hydrops in a twin pregnancy. Turk J Pediatr. 2006;48:73–75.

    PubMed  Google Scholar 

  49. Drabik-Clary K, Reddy VVB, Benjamin WH, Boctor FN. Severe hemolytic disease of the newborn in a group B African-American infant delivered by a group O mother. Ann Clin Lab Sci. 2006;36:205–7.

    PubMed  Google Scholar 

  50. Myle AK, Al-Khattabi GH. Hemolytic disease of the newborn; a review of current trends and prospects. Pediatr Health Med Ther. 2021;12:491–8.

    Article  Google Scholar 

  51. Jackson ME, Baker JM. Hemolytic disease of the fetus and newborn: historical and current state. Clin Lab Med. 2021;41:133–51.

    Article  PubMed  Google Scholar 

  52. Sun JB. The prenatal intervention of pregnancy complicated with anti-Kell isoimmunization: a review. J Matern Fetal Neonatal Med. 2021;34:2893–9.

    Article  PubMed  Google Scholar 

  53. Coombs RRA, Mourant EA. In-vivo isosensitisation of red cells in babies with haemolytic disease. Lancet. 1946;6391:264–6.

    Article  Google Scholar 

  54. Chown B, Lewis M, Best B. Severe haemolytic disease of the newborn due probably to the combined action of anti-A and anti-S. Can Med Assoc J. 1957;77:31–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Denomme GA. Kell and Kx blood group systems. Immunohematology. 2015;31:14–9.

    Article  PubMed  Google Scholar 

  56. Lee S, Russo D, Redman C. Functional and structural aspects of the kell blood group system. Transfus Med Rev. 2000;14:93–103.

    Article  CAS  PubMed  Google Scholar 

  57. Lee S, Wu X, Reid M, Zelinski T, Redman C. Molecular basis of the Kell (K1) phenotype. Blood. 1995;85:912–6.

    Article  CAS  PubMed  Google Scholar 

  58. Malandrini A, Fabrizi GM, Truschi F, Di Pietro G, Moschini F, Bartalucci P, et al. Atypical McLeod syndrome manifested as X-linked chorea-acanthocytosis, neuromyopathy, and dilated cardiomyopathy: report of a family. J Neurol Sci. 1994;124:89–94.

    Article  CAS  PubMed  Google Scholar 

  59. Vaughan JI, Manning M, Warwick RM, Letsky EA, Murray NA, Roberts IA. Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med. 1998;338:798–803.

    Article  CAS  PubMed  Google Scholar 

  60. Wagner T, Lanzer G, Geissler K. Kell expression on myeloid progenitor cells. Leuk Lymphoma. 2002;43:479–85.

    Article  CAS  PubMed  Google Scholar 

  61. Wagner T, Bernaschek G, Geissler K. Inhibition of megakaryopoiesis by Kell-related antibodies. N Engl J Med. 2000;343:72.

    Article  CAS  PubMed  Google Scholar 

  62. Slootweg YM, Lindenburg IT, Koelewijn JM, Van Kamp IL, Oepkes D, De Haas M. Predicting anti-Kell-mediated hemolytic disease of the fetus and newborn: diagnostic accuracy of laboratory management. Am J Obstet Gynecol. 2018;219:393.e1–393.e8.

    Article  PubMed  Google Scholar 

  63. Rieneck K, Clausen FB, Bergholt T, Nørgaard LN, Dziegiel MH. Non-invasive fetal K status prediction: 7 years of experience. Transfus Med Hemother. 2022;49:240–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ning S, Morin PA, Elahie A, Li N, Liu Y, Barty R, et al. NM. KEL1 negative red cell transfusions for females of current or future child-bearing potential: A clinical impact and feasibility study. Transfusion. 2023;63:59–68.

    Article  CAS  PubMed  Google Scholar 

  65. Luken JS, Folman CC, Lukens MV, Meekers JH, Ligthart PC, Schonewille H, et al. Reduction of anti-K-mediated hemolytic disease of newborns after the introduction of a matched transfusion policy: A nation-wide policy change evaluation study in the Netherlands. Transfusion. 2021;61:713–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cutbush M, Mollison PL, Parkin DM. A new human blood group. Nature. 1950;165:188–9.

    Article  Google Scholar 

  67. Meny GM. The Duffy blood group system: a review. Immunohematology. 2010;26:51–6.

    Article  CAS  PubMed  Google Scholar 

  68. Goodrick MJ, Hadley AG, Poole G. Haemolytic disease of the fetus and newborn due to anti-Fy(a) and the potential clinical value of Duffy genotyping in pregnancies at risk. Transfus Med. 1997;7:301–4.

    Article  CAS  PubMed  Google Scholar 

  69. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.

    Article  CAS  PubMed  Google Scholar 

  70. Atallah-Yunes SA, Ready A, Newburger PE. Benign ethnic neutropenia. Blood Rev. 2019;37:100586.

    Article  PubMed  Google Scholar 

  71. Gay K, Dulay K, Ravindranath Y, Savaşan S Duffy-null phenotype-associated neutropenia is the most common etiology for leukopenia/neutropenia referrals to a tertiary children’s hospital. J Pediatr. 2023 Jul 5:113608. https://doi.org/10.1016/j.jpeds.2023.113608. Epub ahead of print.

  72. Reid ME. MNS blood group system: a review. Immunohematology. 2009;25:95–101.

    Article  CAS  PubMed  Google Scholar 

  73. Hassan SN, Thirumulu Ponnuraj K, Mohamad S, Hassan R, Wan Ab Rahman WS. Molecular detection of glycophorins A and B variant phenotypes and their clinical relevance. Transfus Med Rev. 2019;33:118–24.

    Article  PubMed  Google Scholar 

  74. Yasuda H, Ohto H, Nollet KE, Kawabata K, Saito S, Yagi Y, et al. Hemolytic disease of the fetus and newborn with late-onset anemia due to anti-M: a case report and review of the Japanese literature. Transfus Med Rev. 2014;28:1–6.

    Article  PubMed  Google Scholar 

  75. Andersen LH, Jacob EK, McThenia SS, Tauscher CD, Patterson ER, Oliveira JL, et al. Hemolytic disease and reticulocytopenia of the newborn attributable to maternal immunoglobulin G anti-M reacting optimally at cold temperatures. Transfusion. 2021;61:974–8.

    Article  CAS  PubMed  Google Scholar 

  76. Ishida A, Ohto H, Yasuda H, Negishi Y, Tsuiki H, Arakawa T, et al. Anti-M antibody induced prolonged anemia following hemolytic disease of the newborn due to erythropoietic suppression in 2 siblings. J Pediatr Hematol Oncol. 2015;37:e375–7.

    Article  PubMed  Google Scholar 

  77. He Y, Gao W, Li Y, Xu C, Wang Q. A single-center, retrospective analysis of 17 cases of hemolytic disease of the fetus and newborn caused by anti-M antibodies. Transfusion. 2023;63:494–506.

    Article  CAS  PubMed  Google Scholar 

  78. Allen FH, Diamond LK, Niedziela B. A new blood-group antigen. Nature. 1951;167:482.

    Article  Google Scholar 

  79. Lawicki S, Covin RB, Powers AA. The Kidd (JK) blood group system. Transfus Med Rev. 2017;31:165–72.

    Article  PubMed  Google Scholar 

  80. Hamilton JR. Kidd blood group system: a review. Immunohematology. 2015;31:29–35.

    Article  PubMed  Google Scholar 

  81. Kim WD, Lee YH. A fatal case of severe hemolytic disease of the newborn associated with anti-Jk(b). J Korean Med Sci. 2006;21:151–4.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Velasco Rodríguez D, Pérez-Segura G, Jiménez-Ubieto A, Rodriguez MA, Montejano L. Hemolytic disease of the newborn due to anti-Jkb: case report and review of the literature. Indian J Hematol Blood Transfus. 2014;30:135–8.

    Article  PubMed  Google Scholar 

  83. Matson GA, Swanson J, Tobin JD. Severe haemolytic disease of the newborn caused by anti-Jka. VoxSanguinis. 1959;4:144–7.

    CAS  Google Scholar 

  84. Mittal K, Sood T, Bansal N, Bedi RK, Kaur P, Kaur G. Clinical significance of rare maternal anti Jka antibody. Indian J Hematol Blood Transfus. 2016;32:497–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Marchese M. Postpartum acute hemolytic transfusion reactions associated with anti-Lea in two pregnancies complicated by preeclampsia. Immunohematology. 2017;33:114–8.

    Article  PubMed  Google Scholar 

  86. ACOG Practice Bulletin No. 192: Management of Alloimmunization During Pregnancy. Obstet Gynecol. 2018; 131: e82-e90.

  87. Stenfelt L, Hellberg Å, Westman JS, Olsson ML. The P1PK blood group system: revisited and resolved. Immunohematology. 2020;36:99–103.

    Article  PubMed  Google Scholar 

  88. Figueroa D. The Diego blood group system: a review. Immunohematology. 2013;29:73–81.

    Article  PubMed  Google Scholar 

  89. Ting JY, Ma ES, Wong KY. A case of severe haemolytic disease of the newborn due to anti-Di(a) antibody. Hong Kong Med J. 2004;10:347–9.

    CAS  PubMed  Google Scholar 

  90. Hansen TWR, Maisels MJ, Ebbesen F, Vreman HJ, Stevenson DK, Wong RJ, et al. Sixty years of phototherapy for neonatal jaundice - from serendipitous observation to standardized treatment and rescue for millions. J Perinatol. 2020;40:180–93.

    Article  PubMed  Google Scholar 

  91. Kemper AR, Newman TB, Slaughter JL, Maisels MJ, Watchko JF, Downs SM, et al. Clinical practice guideline revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2022;150:e2022058859.

    Article  PubMed  Google Scholar 

  92. American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2004;114:297–316.

    Article  Google Scholar 

  93. ACOG Practice Bulletin No. 181: Prevention of RhD Alloimmunization. Obstet Gynecol. 2017; 130: e57-e70.

  94. Elsaie AL, Taleb M, Nicosia A, Zangaladze A, Pease ME, Newton K, et al. Comparison of end-tidal carbon monoxide measurements with direct antiglobulin tests in the management of neonatal hyperbilirubinemia. J Perinatol. 2020;40:1513–7.

    Article  CAS  PubMed  Google Scholar 

  95. Vats K, Watchko JF. Coordinating care across the perinatal continuum in hemolytic disease of the fetus and newborn: The timely handoff of a positive maternal anti-erythrocyte antibody screen. J Pediatr. 2019;214:212–6.

    Article  PubMed  Google Scholar 

  96. Serra de Almeida N, Pinho C, Faim D, Henriques R. Haemolytic disease of the fetus and newborn: do not miss a positive maternal antierythrocyte antibody screen. BMJ Case Rep. 2021;14:e242731.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

RDC, conception, writing first draft, revising manuscript, final approval of the manuscript. TMB, conception, revising manuscript, final approval of the manuscript. SJI, conception, revising manuscript, final approval of the manuscript. DSD-Z, conception, revising manuscript, final approval of the manuscript.

Corresponding author

Correspondence to Robert D. Christensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen, R.D., Bahr, T.M., Ilstrup, S.J. et al. Alloimmune hemolytic disease of the fetus and newborn: genetics, structure, and function of the commonly involved erythrocyte antigens. J Perinatol 43, 1459–1467 (2023). https://doi.org/10.1038/s41372-023-01785-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01785-3

This article is cited by

Search

Quick links