Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New frontiers in neonatal red blood cell transfusion research

Abstract

Red blood cell (RBC) transfusions are common in neonates requiring intensive care. Recent studies have compared restricted versus liberal transfusion guidelines, but limitations exist on evaluations of outcomes in populations that never required a transfusion compared to those receiving any transfusion. Although there are well-established risks associated with RBC transfusions, new data has emerged that suggests additional clinically relevant associations, including adverse neurodevelopmental outcomes, donor sex differences, and inflammation or immunosuppression. Further research is needed to delineate the magnitude of these risks and to further improve the safety of transfusions. The goal of this review is to highlight underappreciated, yet clinically important risks associated with neonatal RBC transfusions and to introduce several areas in which neonates may uniquely benefit from alterations in practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Patel RM, Hendrickson JE, Nellis ME, Birch R, Goel R, Karam O, et al. Variation in neonatal transfusion practice. J Pediatr. 2021;235:92–9. https://linkinghub.elsevier.com/retrieve/pii/S002234762100323.

    PubMed  PubMed Central  Google Scholar 

  2. US Food and Drug Administration. Recommendations for Evaluating Donor Eligibility Using Individual Risk-Based Questions to Reduce the Risk of Human Immunodeficiency Virus Transmission by Blood and Blood Products. 2023. https://www.fda.gov/media/164829/download.

  3. Basu D, Kulkarni R. Overview of blood components and their preparation. Indian J Anaesth. 2014;58:529 https://journals.lww.com/10.4103/0019-5049.144647.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Harmening D. Modern Blood Banking & Transfusion Practices. 7th ed. Philadelphia: F.A. Davis Company; 2018. p. 688.

  5. Jain R, Jarosz C. Safety and efficacy of AS-1 red blood cell use in neonates. Transfus Apher Sci. 2001;24:111–5. https://linkinghub.elsevier.com/retrieve/pii/S1473050201000040.

    CAS  PubMed  Google Scholar 

  6. Strauss RG, Burmeister LF, Johnson K, Cress G, Cordle D. Feasibility and safety of AS-3 red blood cells for neonatal transfusions. J Pediatr. 2000;136:215–9. https://linkinghub.elsevier.com/retrieve/pii/S0022347600701041.

    CAS  PubMed  Google Scholar 

  7. Strauss RG. Data-driven blood banking practices for neonatal RBC transfusions. Transfusion. 2000;40:1528–40. http://doi.wiley.com/10.1046/j.1537-2995.2000.40121528.x.

    CAS  PubMed  Google Scholar 

  8. Melzak KA, Uhlig S, Kirschhöfer F, Brenner-Weiss G, Bieback K. The Blood Bag Plasticizer Di-2-Ethylhexylphthalate Causes Red Blood Cells to Form Stomatocytes, Possibly by Inducing Lipid Flip-Flop. Transfus Med Hemotherapy. 2018;45:413–22. https://www.karger.com/Article/FullText/490502.

    Google Scholar 

  9. Reilly M, Bruno CD, Prudencio TM, Ciccarelli N, Guerrelli D, Nair R, et al. Potential Consequences of the Red Blood Cell Storage Lesion on Cardiac Electrophysiology. J Am Heart Assoc. 2020;9. https://www.ahajournals.org/doi/10.1161/JAHA.120.017748.

  10. Yoshida T, Prudent M, D’alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019;17:27–52. http://www.ncbi.nlm.nih.gov/pubmed/30653459.

    PubMed  PubMed Central  Google Scholar 

  11. Fergusson D, Hébert PC, Lee SK, Walker CR, Barrington KJ, Joseph L, et al. Clinical outcomes following institution of universal leukoreduction of blood transfusions for premature infants. JAMA. 2003;289:1950. http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.289.15.1950.

    PubMed  Google Scholar 

  12. Delaney M, Mayock D, Knezevic A, Norby-Slycord C, Kleine E, Patel R, et al. Postnatal cytomegalovirus infection: a pilot comparative effectiveness study of transfusion safety using leukoreduced-only transfusion strategy. Transfusion. 2016;56:1945–50. https://onlinelibrary.wiley.com/doi/10.1111/trf.13605.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Winter KM, Johnson L, Kwok M, Reid S, Alarimi Z, Wong JKL, et al. Understanding the effects of gamma-irradiation on potassium levels in red cell concentrates stored in SAG-M for neonatal red cell transfusion. Vox Sang. 2015;108:141–50. https://onlinelibrary.wiley.com/doi/10.1111/vox.12194.

    CAS  PubMed  Google Scholar 

  14. Saito-Benz M, Bennington K, Gray CL, Murphy WG, Flanagan P, Steiner F, et al. Effects of freshly irradiated vs irradiated and stored red blood cell transfusion on cerebral oxygenation in preterm infants. JAMA Pediatr. 2022;176:e220152. https://jamanetwork.com/journals/jamapediatrics/fullarticle/2790363.

    PubMed  PubMed Central  Google Scholar 

  15. Ohls RK. Transfusion Thresholds in the Neonatal Intensive Care Unit. In: Hematology, Immunology and Genetics. Elsevier; 2019. p. 31–41. https://linkinghub.elsevier.com/retrieve/pii/B9780323544009000035.

  16. Pilania RK, Saini SS, Dutta S, Das R, Marwaha N, Kumar P. Factors affecting efficacy of packed red blood cell transfusion in neonates. Eur J Pediatr. 2017;176:67–74. http://link.springer.com/10.1007/s00431-016-2806-7.

    CAS  PubMed  Google Scholar 

  17. Christensen RD, Henry E, Jopling J, Wiedmeier SE. The CBC: reference ranges for neonates. Semin Perinatol. 2009;33:3–11. https://linkinghub.elsevier.com/retrieve/pii/S0146000508001274.

    PubMed  Google Scholar 

  18. Bell EF, Strauss RG, Widness JA, Mahoney LT, Mock DM, Seward VJ, et al. Randomized trial of liberal versus restrictive guidelines for red blood cell. Transfus Preterm Infants Pediatrics. 2005;115:1685–91. https://publications.aap.org/pediatrics/article/115/6/1685/67477/Randomized-Trial-of-Liberal-Versus-Restrictive.

    Google Scholar 

  19. Kirpalani H, Whyte RK, Andersen C, Asztalos EV, Heddle N, Blajchman MA, et al. The premature infants in need of transfusion (pint) study: A randomized, controlled trial of a restrictive (LOW) versus liberal (HIGH) transfusion threshold for extremely low birth weight infants. J Pediatr. 2006;149:301–307.e3. https://linkinghub.elsevier.com/retrieve/pii/S0022347606004446.

    PubMed  Google Scholar 

  20. Kirpalani H, Bell EF, Hintz SR, Tan S, Schmidt B, Chaudhary AS, et al. Higher or lower hemoglobin transfusion thresholds for preterm infants. N. Engl J Med. 2020;383:2639–51. http://www.nejm.org/doi/10.1056/NEJMoa2020248.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Franz AR, Engel C, Bassler D, Rüdiger M, Thome UH, Maier RF, et al. Effects of liberal vs restrictive transfusion thresholds on survival and neurocognitive outcomes in extremely low-birth-weight infants. JAMA. 2020;324:560. https://jamanetwork.com/journals/jama/fullarticle/2769262.

    PubMed  Google Scholar 

  22. Whyte RK, Kirpalani H, Asztalos EV, Andersen C, Blajchman M, Heddle N, et al. Neurodevelopmental outcome of extremely low birth weight infants randomly assigned to restrictive or liberal hemoglobin thresholds for blood transfusion. Pediatrics. 2009;123:207–13. https://publications.aap.org/pediatrics/article/123/1/207/71929/Neurodevelopmental-Outcome-of-Extremely-Low-Birth.

    PubMed  Google Scholar 

  23. Benavides A, Bell EF, Conrad AL, Feldman HA, Georgieff MK, Josephson CD, et al. Sex differences in the association of pretransfusion hemoglobin levels with brain structure and function in the preterm infant. J Pediatr. 2022;243:78–84.e5. https://linkinghub.elsevier.com/retrieve/pii/S0022347621012580.

    CAS  PubMed  Google Scholar 

  24. Shah P, Cannon DC, Lowe JR, Phillips J, Christensen RD, Kamath-Rayne B, et al. Effect of blood transfusions on cognitive development in very low birth weight infants. J Perinatol. 2021;41:1412–8. http://www.nature.com/articles/s41372-021-00997-9.

    PubMed  PubMed Central  Google Scholar 

  25. Vu PT, Ohls RK, Mayock DE, German KR, Comstock BA, Heagerty PJ, et al. Transfusions and neurodevelopmental outcomes in extremely low gestation neonates enrolled in the PENUT Trial: a randomized clinical trial. Pediatr Res. 2021;90:109–16. https://www.nature.com/articles/s41390-020-01273-w.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fontana C, Raffaeli G, Pesenti N, Boggini T, Cortesi V, Manzoni F, et al. Red blood cell transfusions in preterm newborns and neurodevelopmental outcomes at 2 and 5 years of age. Blood Transfus. 2022;20:40–9. http://www.ncbi.nlm.nih.gov/pubmed/33263525.

    PubMed  PubMed Central  Google Scholar 

  27. Lum TG, Sugar J, Yim R, Fertel S, Morales A, Poeltler D, et al. Two-year neurodevelopmental outcomes of preterm infants who received red blood cell transfusion. Blood Transfus. 2022;20:180–7. http://www.ncbi.nlm.nih.gov/pubmed/34369862.

    PubMed  PubMed Central  Google Scholar 

  28. Falck AJ, Medina AE, Cummins-Oman J, El-Metwally D, Bearer CF. Mercury, lead, and cadmium exposure via red blood cell transfusions in preterm infants. Pediatr Res. 2020;87:677–82. http://www.nature.com/articles/s41390-019-0635-x.

    CAS  PubMed  Google Scholar 

  29. Ibrahim R, Mohamed D, Abdelghaffar S, Mansi Y. Red blood transfusion in preterm infants: changes in glucose, electrolytes and acid base balance. Asian J Transfus Sci. 2012;6:36. http://www.ajts.org/text.asp?2012/6/1/36/95049.

    PubMed  PubMed Central  Google Scholar 

  30. Yamada C, Edelson M, Lee A, Saifee NH, Bahar B, Delaney M. Transfusion‐associated hyperkalemia in pediatric population: Prevalence, risk factors, survival, infusion rate, and <scp>RBC</scp> unit features. Transfusion. 2021;61:1093–101. https://onlinelibrary.wiley.com/doi/10.1111/trf.16300.

    CAS  PubMed  Google Scholar 

  31. Burke M, Sinha P, Luban NLC, Posnack NG. Transfusion-Associated Hyperkalemic Cardiac Arrest in Neonatal, Infant, and Pediatric Patients. Front Pediatr. 2021;9. https://www.frontiersin.org/articles/10.3389/fped.2021.765306/full.

  32. Dani C, Perugi S, Benuzzi A, Corsini I, Bertini G, Pratesi S, et al. Effects of red blood cell transfusions during the first week of life on acid-base, glucose, and electrolytes in preterm neonates. Transfusion. 2008;48:2302–7. https://onlinelibrary.wiley.com/doi/10.1111/j.1537-2995.2008.01839.x.

    CAS  PubMed  Google Scholar 

  33. Webster S, Todd S, Redhead J, Wright C. Ionised calcium levels in major trauma patients who received blood in the Emergency Department. Emerg Med J. 2016;33:569–72. https://emj.bmj.com/lookup/doi/10.1136/emermed-2015-205096.

    PubMed  Google Scholar 

  34. Vuralli D. Clinical Approach to Hypocalcemia in Newborn Period and Infancy: Who Should Be Treated? Int J Pediatr. 2019;2019:1–7. https://www.hindawi.com/journals/ijpedi/2019/4318075/.

    Google Scholar 

  35. Ogunlesi TA, Lesi FE, Oduwole O Prophylactic intravenous calcium therapy for exchange blood transfusion in the newborn. Cochrane Database Syst Rev. 2017;2017. http://doi.wiley.com/10.1002/14651858.CD011048.pub2.

  36. Ratcliffe JM, Elliott MJ, Wyse RK, Hunter S, Alberti KG. The metabolic load of stored blood. Implications for major transfusions in infants. Arch Dis Child. 1986;61:1208–14. https://adc.bmj.com/lookup/doi/10.1136/adc.61.12.1208.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Späth C, Stoltz Sjöström E, Ågren J, Ahlsson F, Domellöf M. Sodium supply from administered blood products was associated with severe intraventricular haemorrhage in extremely preterm infants. Acta Paediatr. 2022;111:1701–8. https://onlinelibrary.wiley.com/doi/10.1111/apa.16423.

    PubMed  PubMed Central  Google Scholar 

  38. Lee HJ, Lee BS, Do H-J, Oh S-H, Choi Y-S, Chung S-H, et al. Early sodium and fluid intake and severe intraventricular hemorrhage in extremely low birth weight infants. J Korean Med Sci. 2015;30:283 https://jkms.org/DOIx.php?id=10.3346/jkms.2015.30.3.283.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim W-H, Lien R, Chiang M-C, Fu R-H, Lin J-J, Chu S-M, et al. Hypernatremia and grade III/IV intraventricular hemorrhage among extremely low birth weight infants. J Perinatol. 2011;31:193–8.

    CAS  PubMed  Google Scholar 

  40. Striker CW, Woldorf S, Holt D. Modification of sodium, glucose, potassium, and osmolarity in packed red blood cells and fresh frozen plasma using a desktop hemoconcentrator setup. J Extra Corpor Technol. 2012;44:60–5. http://www.ncbi.nlm.nih.gov/pubmed/22893984.

    PubMed  PubMed Central  Google Scholar 

  41. Cheli VT, Correale J, Paez PM, Pasquini JM. Iron metabolism in oligodendrocytes and astrocytes, implications for myelination and remyelination. ASN Neuro. 2020;12:175909142096268 http://journals.sagepub.com/doi/10.1177/1759091420962681.

    Google Scholar 

  42. Hare D, Ayton S, Bush A, Lei P. A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 2013;5. http://journal.frontiersin.org/article/10.3389/fnagi.2013.00034/abstract.

  43. McCann JC, Ames BN. An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am J Clin Nutr. 2007;85:931–45. https://linkinghub.elsevier.com/retrieve/pii/S0002916523280090.

    CAS  PubMed  Google Scholar 

  44. Remacha A, Sanz C, Contreras E, De Heredia CD, Grifols JR, Lozano M, et al. Guidelines on haemovigilance of post-transfusional iron overload. Blood Transfus. 2013;11:128–39. http://www.ncbi.nlm.nih.gov/pubmed/22790272.

    PubMed  PubMed Central  Google Scholar 

  45. Benitz WE. Treatment of persistent patent ductus arteriosus in preterm infants: time to accept the null hypothesis? J Perinatol. 2010;30:241–52. https://www.nature.com/articles/jp20103.

    CAS  PubMed  Google Scholar 

  46. Hirano K, Morinobu T, Kim H, Hiroi M, Ban R, Ogawa S, et al. Blood transfusion increases radical promoting non-transferrin bound iron in preterm infants. Arch Dis Child - Fetal Neonatal Ed. 2001;84:F188–93. https://fn.bmj.com/lookup/doi/10.1136/fn.84.3.F188.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. MacQueen BC, Baer VL, Scott DM, Ling CY, O’Brien EA, Boyer C, et al. Iron supplements for infants at risk for iron deficiency. Glob Pediatr Heal. 2017;4:2333794X1770383 http://journals.sagepub.com/doi/10.1177/2333794X17703836.

    Google Scholar 

  48. German K, Vu PT, Grelli KN, Denton C, Lee G, Juul SE. Zinc protoporphyrin-to-heme ratio and ferritin as measures of iron sufficiency in the neonatal intensive care unit. J Pediatr. 2018;194:47–53. https://linkinghub.elsevier.com/retrieve/pii/S002234761731452X.

    CAS  PubMed  Google Scholar 

  49. Zamora TG, Guiang SF, Widness JA, Georgieff MK. Iron is prioritized to red blood cells over the brain in phlebotomized anemic newborn lambs. Pediatr Res. 2016;79:922–8. http://www.nature.com/articles/pr201620.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Popovsky MA. Transfusion and the lung: circulatory overload and acute lung injury. Vox Sang. 2004;87:62–5. https://onlinelibrary.wiley.com/doi/10.1111/j.1741-6892.2004.00453.x.

    PubMed  Google Scholar 

  51. Eades SK, Christensen ML. The clinical pharmacology of loop diuretics in the pediatric patient. Pediatr Nephrol. 1998;12:603–16. http://link.springer.com/10.1007/s004670050514.

    CAS  PubMed  Google Scholar 

  52. Sarai M, Tejani AM. Loop diuretics for patients receiving blood transfusions. Cochrane Database Syst Rev. 2015. https://doi.wiley.com/10.1002/14651858.CD010138.pub2.

  53. Sarkar S, Dechert R, Becker MA, Attar MA, Schumacher RE, Donn SM. Double-masked, randomized, placebo-controlled trial of furosemide after packed red blood cell transfusion in preterm infants. J Neonatal Perinat Med. 2008;1:13–19.

    Google Scholar 

  54. Balegar VKK, Kluckow M. Furosemide for packed red cell transfusion in preterm infants: a randomized controlled trial. J Pediatr. 2011;159:913–918.e1. https://linkinghub.elsevier.com/retrieve/pii/S0022347611005002.

    Google Scholar 

  55. Youssef LA, Spitalnik SL. Transfusion-related immunomodulation. Curr Opin Hematol. 2017;24:551–7. http://journals.lww.com/00062752-201711000-00013.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Vamvakas EC, Blajchman MA. Transfusion-related immunomodulation (TRIM): an update. Blood Rev. 2007;21:327–48. https://linkinghub.elsevier.com/retrieve/pii/S0268960X07000355.

    PubMed  Google Scholar 

  57. Remy KE, Hall MW, Cholette J, Juffermans NP, Nicol K, Doctor A, et al. Mechanisms of red blood cell transfusion-related immunomodulation. Transfusion. 2018;58:804–15. https://onlinelibrary.wiley.com/doi/10.1111/trf.14488.

    PubMed  PubMed Central  Google Scholar 

  58. Hod EA. Red blood cell transfusion-induced inflammation: myth or reality. ISBT Sci Ser. 2015;10:188–91. https://onlinelibrary.wiley.com/doi/10.1111/voxs.12108.

    PubMed  PubMed Central  Google Scholar 

  59. Dani C, Poggi C, Gozzini E, Leonardi V, Sereni A, Abbate R, et al. Red blood cell transfusions can induce proinflammatory cytokines in preterm infants. Transfusion. 2017;57:1304–10. https://onlinelibrary.wiley.com/doi/10.1111/trf.14080.

    CAS  PubMed  Google Scholar 

  60. Stark MJ, Keir AK, Andersen CC. Does non-transferrin bound iron contribute to transfusion related immune-modulation in preterms? Arch Dis Child - Fetal Neonatal Ed. 2013;98:F424–9. https://fn.bmj.com/lookup/doi/10.1136/archdischild-2012-303353.

    PubMed  Google Scholar 

  61. Crawford TM, Andersen CC, Hodyl NA, Robertson SA, Stark MJ. Effect of washed versus unwashed red blood cells on transfusion‐related immune responses in preterm newborns. Clin Transl Immunol. 2022;11. https://onlinelibrary.wiley.com/doi/10.1002/cti2.1377.

  62. Benavides A, Bell EF, Georgieff MK, Josephson CD, Stowell SR, Feldman HA, et al. Sex-specific cytokine responses and neurocognitive outcome after blood transfusions in preterm infants. Pediatr Res. 2022;91:947–54. http://www.ncbi.nlm.nih.gov/pubmed/33911194.

    CAS  PubMed  Google Scholar 

  63. Wood TR, Parikh P, Comstock BA, Law JB, Bammler TK, Kuban KC, et al. Early Biomarkers of Hypoxia and Inflammation and Two-Year Neurodevelopmental Outcomes in the Preterm Erythropoietin Neuroprotection (PENUT) Trial. eBioMedicine. 2021;72:103605. https://linkinghub.elsevier.com/retrieve/pii/S2352396421003984.

    PubMed  PubMed Central  Google Scholar 

  64. Kalteren WS, Bos AF, Bergman KA, van Oeveren W, Hulscher JBF, Kooi EMW. The short-term effects of RBC transfusions on intestinal injury in preterm infants. Pediatr Res. 2022. https://www.nature.com/articles/s41390-022-01961-9.

  65. Olsson KW, Larsson A, Jonzon A, Sindelar R. Exploration of potential biochemical markers for persistence of patent ductus arteriosus in preterm infants at 22–27 weeks’ gestation. Pediatr Res. 2019;86:333–8. http://www.nature.com/articles/s41390-018-0182-x.

    CAS  PubMed  Google Scholar 

  66. Patel RM, Lukemire J, Shenvi N, Arthur C, Stowell SR, Sola-Visner M, et al. Association of blood donor sex and age with outcomes in very low-birth-weight infants receiving blood transfusion. JAMA Netw Open. 2021;4:e2123942. https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2783715.

    PubMed  PubMed Central  Google Scholar 

  67. Murphy T, Chawla A, Tucker R, Vohr B. Impact of blood donor sex on transfusion-related outcomes in preterm infants. J Pediatr. 2018;201:215–20. https://linkinghub.elsevier.com/retrieve/pii/S0022347618305249.

    PubMed  Google Scholar 

  68. Crawford TM, Andersen CC, Stark MJ. Red Blood Cell Donor Sex Associated Effects on Morbidity and Mortality in the Extremely Preterm Newborn. Children. 2022;9:1980. https://www.mdpi.com/2227-9067/9/12/1980.

  69. Crawford T, Andersen C, Marks DC, Robertson SA, Stark M. Does donor sex influence the potential for transfusion with washed packed red blood cells to limit transfusion-related immune responses in preterm newborns? Arch Dis Child - Fetal Neonatal Ed. 2023. https://fn.bmj.com/lookup/doi/10.1136/archdischild-2022-324531.

  70. Bard H, Prosmanne J. Postnatal fetal and adult hemoglobin synthesis is preterm infants whose birth weight was less than 1,000 grams. J Clin Investig. 1982;70:50–2. http://www.jci.org/articles/view/110602.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bard H. Postnatal fetal and adult hemoglobin synthesis in early preterm newborn infants. J Clin Investig. 1973;52:1789–95. http://www.jci.org/articles/view/107360.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gavulic AE, Dougherty D, Li S-H, Carver AR, Bermick JR, Mychaliska GB, et al. Fetal hemoglobin levels in premature newborns. Should we reconsider transfusion of adult donor blood? J Pediatr Surg. 2021;56:1944–8. https://linkinghub.elsevier.com/retrieve/pii/S0022346821003286.

    PubMed  Google Scholar 

  73. Stutchfield CJ, Jain A, Odd D, Williams C, Markham R. Foetal haemoglobin, blood transfusion, and retinopathy of prematurity in very preterm infants: a pilot prospective cohort study. Eye. 2017;31:1451–5. http://www.nature.com/articles/eye201776.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Teofili L, Papacci P, Orlando N, Bianchi M, Molisso A, Purcaro V, et al. Allogeneic cord blood transfusions prevent fetal haemoglobin depletion in preterm neonates. Results of the CB‐TrIP study. Br J Haematol. 2020;191:263–8. https://onlinelibrary.wiley.com/doi/10.1111/bjh.16851.

    CAS  PubMed  Google Scholar 

  75. Bianchi M, Giannantonio C, Spartano S, Fioretti M, Landini A, Molisso A, et al. Allogeneic umbilical cord blood red cell concentrates: an innovative blood product for transfusion therapy of preterm infants. Neonatology. 2015;107:81–6. https://www.karger.com/Article/FullText/368296.

    CAS  PubMed  Google Scholar 

  76. Strauss RG, Widness JA. Is There a Role for Autologous/Placental Red Blood Cell Transfusions in the Anemia of Prematurity? Transfus Med Rev. 2010;24:125–9. https://linkinghub.elsevier.com/retrieve/pii/S0887796309001217.

    PubMed  PubMed Central  Google Scholar 

  77. Khodabux CM, von Lindern JS, van Hilten JA, Scherjon S, Walther FJ, Brand A. A clinical study on the feasibility of autologous cord blood transfusion for anemia of prematurity. Transfusion. 2008;48:1634–43. https://onlinelibrary.wiley.com/doi/10.1111/j.1537-2995.2008.01747.x.

    PubMed  Google Scholar 

  78. Katheria AC, Clark E, Yoder B, Schmölzer GM, Yan Law BH, El-Naggar W, et al. Umbilical cord milking in nonvigorous infants: a cluster-randomized crossover trial. Am J Obstet Gynecol. 2023;228:217.e1–217.e14. https://linkinghub.elsevier.com/retrieve/pii/S0002937822006494.

    PubMed  Google Scholar 

  79. Lawton C, Acosta S, Watson N, Gonzales-Portillo C, Diamandis T, Tajiri N, et al. Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping. Neural Regen Res. 2015;10:1359 https://journals.lww.com/10.4103/1673-5374.165218.

    PubMed  PubMed Central  Google Scholar 

  80. Strauss RG. How I transfuse red blood cells and platelets to infants with the anemia and thrombocytopenia of prematurity. Transfusion. 2008;48:209–17. https://onlinelibrary.wiley.com/doi/10.1111/j.1537-2995.2007.01592.x.

    PubMed  PubMed Central  Google Scholar 

  81. American Red Cross. A Compendium of Transfusion Practice Guidelines Edition 4.0. 2021. Accessed 25 Feb 2023. p. 75. https://www.redcross.org/content/dam/redcrossblood/hospital-page-documents/334401_compendium_v04jan2021_bookmarkedworking_rwv01.pdf.

  82. Simon T, McCullough J, Snyder E, Solheim B, Strauss R. Rossi’s Principles of Transfusion Medicine. 5th ed. Simon Toby M, editor. Wiley-Blackwell; 2016. p. 760.

  83. Goel R, Tobian AAR, Shaz BH. Noninfectious transfusion-associated adverse events and their mitigation strategies. Blood. 2019;133:1831–9. https://ashpublications.org/blood/article/133/17/1831/275901/Noninfectious-transfusionassociated-adverse-events.

    CAS  PubMed  Google Scholar 

  84. Silliman CC, Boshkov LK, Mehdizadehkashi Z, Elzi DJ, Dickey WO, Podlosky L, et al. Transfusion-related acute lung injury: epidemiology and a prospective analysis of etiologic factors. Blood. 2003;101:454–62. https://ashpublications.org/blood/article/101/2/454/106433/Transfusionrelated-acute-lung-injury-epidemiology.

    CAS  PubMed  Google Scholar 

  85. Roubinian NH, Hendrickson JE, Triulzi DJ, Gottschall JL, Chowdhury D, Kor DJ, et al. Incidence and clinical characteristics of transfusion-associated circulatory overload using an active surveillance algorithm. Vox Sang. 2017;112:56–63. https://onlinelibrary.wiley.com/doi/10.1111/vox.12466.

    CAS  PubMed  Google Scholar 

  86. Erony SM, Marshall CE, Gehrie EA, Boyd JS, Ness PM, Tobian AAR, et al. The epidemiology of bacterial culture-positive and septic transfusion reactions at a large tertiary academic center: 2009 to 2016. Transfusion. 2018;58:1933–9. https://onlinelibrary.wiley.com/doi/10.1111/trf.14789.

    PubMed  Google Scholar 

  87. Dodd RY, Crowder LA, Haynes JM, Notari EP, Stramer SL, Steele WR. Screening Blood Donors for HIV, HCV, and HBV at the American Red Cross: 10-Year Trends in Prevalence, Incidence, and Residual Risk, 2007 to 2016. Transfus Med Rev. 2020;34:81–93. https://linkinghub.elsevier.com/retrieve/pii/S0887796320300122.

  88. Pritišanac E, Urlesberger B, Schwaberger B, Pichler G. Fetal Hemoglobin and Tissue Oxygenation Measured With Near-Infrared Spectroscopy—A Systematic Qualitative Review. Front Pediatr. 2021;9. https://www.frontiersin.org/articles/10.3389/fped.2021.710465/full.

Download references

Acknowledgements

The authors would like the thank the WECaN-TECaN Mentorship Program for arranging this opportunity for CMS and SEJ to work together on a topic of common interest.

Author information

Authors and Affiliations

Authors

Contributions

CMS and SEJ substantially contributed to the conception and design of the article, interpreted the relevant literature, drafted and revised the article, and approved of the final version of the manuscript.

Corresponding author

Correspondence to Christopher M. Stark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, C.M., Juul, S.E. New frontiers in neonatal red blood cell transfusion research. J Perinatol 43, 1349–1356 (2023). https://doi.org/10.1038/s41372-023-01757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01757-7

This article is cited by

Search

Quick links