Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Artificial intelligence in the neonatal intensive care unit: the time is now

Abstract

Artificial intelligence (AI) has the potential to revolutionize the neonatal intensive care unit (NICU) care by leveraging the large-scale, high-dimensional data that are generated by NICU patients. There is an emerging recognition that the confluence of technological progress, commercialization pathways, and rich data sets provides a unique opportunity for AI to make a lasting impact on the NICU. In this perspective article, we discuss four broad categories of AI applications in the NICU: imaging interpretation, prediction modeling of electronic health record data, integration of real-time monitoring data, and documentation and billing. By enhancing decision-making, streamlining processes, and improving patient outcomes, AI holds the potential to transform the quality of care for vulnerable newborns, making the excitement surrounding AI advancements well-founded and the potential for significant positive change stronger than ever before.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Russell S, Norvig P. A modern, agent-oriented approach to introductory artificial intelligence. SIGART Newsl. 1995;6:24–6.

    Google Scholar 

  2. Finlayson SG, Beam AL, van Smeden M. Machine Learning and Statistics in Clinical Research Articles-Moving Past the False Dichotomy. JAMA Pediatr. 2023. https://doi.org/10.1001/jamapediatrics.2023.0034.

  3. Mccarthy J. What is artificial intelligence? https://cse.unl.edu/~choueiry/S09-476-876/Documents/whatisai.pdf (accessed 2 Feb2023).

  4. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev. 1958;65:386.

    CAS  PubMed  Google Scholar 

  5. Lewis-Kraus G. The great AI awakening. N Y Mag. 2016;14:2016.

    Google Scholar 

  6. Times, T. N. Y. New navy device learns by doing. Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser 1958;74.

  7. Mukherjee, S. AI versus MD: What happens when diagnosis is automated? The New Yorker. 2017;3.

  8. Beam AL, Kohane IS. Translating artificial intelligence into clinical care. JAMA. 2016;316:2368–9.

    PubMed  Google Scholar 

  9. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in healthcare. Nat Biomed Eng. 2018;2:719–31.

    PubMed  Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. In: NIPS. 2012. p. 4.

  11. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv preprint arXiv:151203385 2015. http://arxiv.org/abs/1512.03385.

  12. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Red Hook, NY, USA: Curran Associates Inc.; 2017. 6000–10.

  13. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv [cs.CL]. 2018. http://arxiv.org/abs/1810.04805.

  14. Schmaltz A, Beam AL. Sharpening the resolution on data matters: a brief roadmap for understanding deep learning for medical data. Spine J. 2021;21:1606–9.

    PubMed  Google Scholar 

  15. Hinton G, Deng L, Yu D, Dahl GE, Mohamed A-R, Jaitly N, et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Proc Mag. 2012;29:82–97.

    Google Scholar 

  16. Graves A, Mohamed A-R, Hinton G. Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. p. 6645–9.

  17. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, et al. WaveNet: A Generative Model for Raw Audio. arXiv [cs.SD]. 2016. http://arxiv.org/abs/1609.03499.

  18. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.

    Google Scholar 

  19. Ciregan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. 2012. p. 3642–9.

  20. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    CAS  PubMed  Google Scholar 

  21. Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.

    PubMed  Google Scholar 

  22. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. p. 779–88.

  23. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language Models are Few-Shot Learners. arXiv [cs.CL]. 2020. http://arxiv.org/abs/2005.14165.

  24. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ingraham J, Baranov M, Costello Z, Frappier V, Ismail A, Tie S, et al. Illuminating protein space with a programmable generative model. bioRxiv. 2022; 2022.12.01.518682.

  26. Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural Message Passing for Quantum Chemistry. In: Precup D, Teh YW, editors. Proceedings of the 34th International Conference on Machine Learning. PMLR, 06–11 2017. p. 1263–72.

  27. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–9.

    CAS  PubMed  Google Scholar 

  28. Beam AL, Drazen JM, Kohane IS, Leong T-Y, Manrai AK, Rubin EJ. Artificial Intelligence in Medicine. N Engl J Med. 2023;388:1220–1.

    PubMed  Google Scholar 

  29. Beam AL, Kohane IS. Big data and machine learning in health care. J Am Med Assoc. 2018;319:1317–8.

    Google Scholar 

  30. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv [cs.CV]. 2017. http://arxiv.org/abs/1711.05225.

  31. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 2016;304:649–56.

    Google Scholar 

  32. Kates-Harbeck J, Svyatkovskiy A, Tang W. Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature. 2019;568:526–31.

    CAS  PubMed  Google Scholar 

  33. Baldi P, Sadowski P, Whiteson D. Searching for exotic particles in high-energy physics with deep learning. Nat Commun. 2014;5:4308.

    CAS  PubMed  Google Scholar 

  34. AlQuraishi M. AlphaFold at CASP13. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz422.

  35. Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol. 2005;15:285–9.

    CAS  PubMed  Google Scholar 

  36. Ghorbani A, Ouyang D, Abid A, He B, Chen JH, Harrington RA, et al. Deep learning interpretation of echocardiograms. NPJ Digit Med. 2020;3:10.

    PubMed  PubMed Central  Google Scholar 

  37. Hughes JW, Yuan N, He B, Ouyang J, Ebinger J, Botting P, et al. Deep learning prediction of biomarkers from echocardiogram videos. bioRxiv. 2021. https://doi.org/10.1101/2021.02.03.21251080.

  38. Soenksen LR, Kassis T, Conover ST, Marti-Fuster B, Birkenfeld JS, Tucker-Schwartz J, et al. Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. Sci Transl Med. 2021;13. https://doi.org/10.1126/scitranslmed.abb3652.

  39. Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;26:900–8.

    CAS  PubMed  Google Scholar 

  40. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;546:686.

    CAS  PubMed  Google Scholar 

  41. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39.

    PubMed  PubMed Central  Google Scholar 

  42. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning. Invest Ophthalmol Vis Sci. 2016;57:5200–6.

    PubMed  Google Scholar 

  43. Campanella G, Hanna MG, Geneslaw L, Miraflor A, Werneck Krauss Silva V, Busam KJ, et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med. 2019;25:1301–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Janowczyk A, Madabhushi A. Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. J Pathol Inf. 2016;7:29.

    Google Scholar 

  45. McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep Learning in Radiology. Acad Radio. 2018;25:1472–80.

    Google Scholar 

  46. Palepu A, Beam AL. TIER: Text-Image Entropy Regularization for CLIP-style models. arXiv preprint arXiv:2212 06710 2022.

  47. Wu E, Wu K, Daneshjou R, Ouyang D, Ho DE, Zou J. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat Med. 2021;27:582–4.

    CAS  PubMed  Google Scholar 

  48. Cruz Rivera S, Liu X, Chan A-W, Denniston AK, Calvert MJ, SPIRIT-AI and CONSORT-AI Working Group. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health. 2020;2:e549–e560.

    PubMed  Google Scholar 

  49. Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK, Ashrafian H, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. The Lancet Digital Health, 2020;2:pp.e537-e548.

  50. Rasmy L, Xiang Y, Xie Z, Tao C, Zhi D. Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction. NPJ Digit Med. 2021;4:86.

    PubMed  PubMed Central  Google Scholar 

  51. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health records. NPJ Digit Med. 2018;1:18.

    PubMed  PubMed Central  Google Scholar 

  52. Davoudi A, Malhotra KR, Shickel B, Siegel S, Williams S, Ruppert M, et al. Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep Learning. Sci Rep. 2019;9:8020.

    PubMed  PubMed Central  Google Scholar 

  53. Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med. 2018;99:53–62.

    PubMed  Google Scholar 

  54. Nestor B, Hunter J, Kainkaryam R, Drysdale E, Inglis JB, Shapiro A, et al. Machine learning COVID-19 detection from wearables. Lancet Digit Health. 2023;5:e182–e184.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Schulman J, Zoph B, Kim C, Hilton J, Menick J, Weng J, et al. ChatGPT: Optimizing language models for dialogue. https://openai.com/blog/chatgpt (accessed 11 Jul2023).

  56. Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an AI chatbot for medicine. N Engl J Med. 2023;388:1233–9.

    PubMed  Google Scholar 

  57. Pichai S. An important next step on our AI journey. Google. 2023. https://blog.google/intl/en-africa/products/explore-get-answers/an-important-next-step-on-our-ai-journey/ (accessed 11 Jul2023).

  58. Levine DM, Tuwani R, Kompa B, Varma A, Finlayson SG, Mehrotra A, et al. The Diagnostic and Triage Accuracy of the GPT-3 Artificial Intelligence Model. medRxiv 2023; 2023–2001.

  59. Kung TH, Cheatham M, Medinilla A, Sillos C, De Leon L, Elepano C, et al. Performance of ChatGPT on USMLE: Potential for AI-Assisted Medical Education Using Large Language Models. medRxiv. 2022; 2022–34.

  60. Singhal K, Azizi S, Tu T, Sara Mahdavi S, Wei J, Chung HW, et al. Large Language Models Encode Clinical Knowledge. arXiv [cs.CL]. 2022. http://arxiv.org/abs/2212.13138.

  61. Chen MM, Golding LP, Nicola GN. Who Will Pay for AI? Radio Artif Intell. 2021;3:e210030.

    Google Scholar 

  62. Abràmoff MD, Roehrenbeck C, Trujillo S, Goldstein J, Graves AS, Repka MX, et al. A reimbursement framework for artificial intelligence in healthcare. NPJ Digit Med. 2022;5:72.

    PubMed  PubMed Central  Google Scholar 

  63. Redd TK, Campbell JP, Brown JM, Kim SJ, Ostmo S, Chan RVP, et al. Evaluation of a deep learning image assessment system for detecting severe retinopathy of prematurity. Br J Ophthalmol. 2018. https://doi.org/10.1136/bjophthalmol-2018-313156.

  64. Taylor S, Brown JM, Gupta K, Campbell JP, Ostmo S, Chan RVP, et al. Monitoring Disease Progression With a Quantitative Severity Scale for Retinopathy of Prematurity Using Deep Learning. JAMA Ophthalmol. 2019;137:1022–8.

    PubMed  PubMed Central  Google Scholar 

  65. Tan Z, Simkin S, Lai C, Dai S. Deep Learning Algorithm for Automated Diagnosis of Retinopathy of Prematurity Plus Disease. Transl Vis Sci Technol. 2019;8:23.

    PubMed  PubMed Central  Google Scholar 

  66. Maeda R, Fujita D, Tanaka K, Ozawa J, Haga M, Miyahara H, et al. Predicting the severity of Neonatal Chronic Lung Disease from chest X-ray images using deep learning. In: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2022. p. 1543–7.

  67. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.

    PubMed  Google Scholar 

  68. Ramgopal S, Horvat CM, Yanamala N, Alpern ER. Machine Learning To Predict Serious Bacterial Infections in Young Febrile Infants. Pediatrics 2020; 146. https://doi.org/10.1542/peds.2019-4096.

  69. Hsu J-F, Chang Y-F, Cheng H-J, Yang C, Lin C-Y, Chu S-M, et al. Machine Learning Approaches to Predict In-Hospital Mortality among Neonates with Clinically Suspected Sepsis in the Neonatal Intensive Care Unit. J Pers Med. 2021;11. https://doi.org/10.3390/jpm11080695.

  70. Zeigler AC, Ainsworth JE, Fairchild KD, Wynn JL, Sullivan BA. Sepsis and mortality prediction in very low birth weight infants: Analysis of HeRO and nSOFA. Am J Perinatol. 2023;40:407–14.

    PubMed  Google Scholar 

  71. Irles C, González-Pérez G, Carrera Muiños S, Michel Macias C, Sánchez Gómez C, Martínez-Zepeda A, et al. Estimation of Neonatal Intestinal Perforation Associated with Necrotizing Enterocolitis by Machine Learning Reveals New Key Factors. Int J Environ Res Public Health. 2018;15. https://doi.org/10.3390/ijerph15112509.

  72. Beam KS, Lee M, Hirst K, Beam A, Parad RB. Specificity of International Classification of Diseases codes for bronchopulmonary dysplasia: an investigation using electronic health record data and a large insurance database. J Perinatol. 2021;41:764–71.

    PubMed  PubMed Central  Google Scholar 

  73. McAdams RM, Kaur R, Sun Y, Bindra H, Cho SJ, Singh H. Predicting clinical outcomes using artificial intelligence and machine learning in neonatal intensive care units: a systematic review. J Perinatol. 2022;42:1561–75.

    PubMed  Google Scholar 

  74. Fairchild KD, O’Shea TM. Heart rate characteristics: physiomarkers for detection of late-onset neonatal sepsis. Clin Perinatol. 2010;37:581–98.

    PubMed  PubMed Central  Google Scholar 

  75. Fairchild KD, Lake DE, Kattwinkel J, Moorman JR, Bateman DA, Grieve PG, et al. Vital signs and their cross-correlation in sepsis and NEC: a study of 1,065 very-low-birth-weight infants in two NICUs. Pediatr Res. 2017;81:315–21.

    PubMed  Google Scholar 

  76. Fairchild, KD, Aschner, JL. HeRO monitoring to reduce mortality in NICU patients. Research and Reports in Neonatology; 2012. pp. 65–76.

  77. Boyd E. Introducing GPT-4 in Azure OpenAI Service. https://azure.microsoft.com/en-us/blog/introducing-gpt4-in-azure-openai-service/ (accessed 1 Apr2023).

  78. Zhang H, Lu AX, Abdalla M, McDermott M, Ghassemi M. Hurtful words: quantifying biases in clinical contextual word embeddings. In: Proceedings of the ACM Conference on Health, Inference, and Learning. New York, NY, USA: Association for Computing Machinery; 2020. p. 110–20.

  79. Chen IY, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in healthcare. Annu Rev Biomed Data Sci. 2021;4:123–44.

    PubMed  PubMed Central  Google Scholar 

  80. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366:447–53.

    CAS  PubMed  Google Scholar 

  81. Finlayson SG, Subbaswamy A, Singh K, Bowers J, Kupke A, Zittrain J, et al. The clinician and dataset shift in artificial intelligence. N. Engl J Med. 2021;385:283–6.

    PubMed  PubMed Central  Google Scholar 

  82. Kompa B, Snoek J, Beam A. Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures. Entropy. 2021. https://www.mdpi.com/1099-4300/23/12/1608.

  83. Wong A, Otles E, Donnelly JP, Krumm A, McCullough J, DeTroyer-Cooley O, et al. External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients. JAMA Intern Med. 2021;181:1065–70.

    PubMed  Google Scholar 

  84. Ghassemi M, Oakden-Rayner L, Beam AL. The false hope of current approaches to explainable artificial intelligence in health care. Lancet Digit Health. 2021;3:e745–e750.

    CAS  PubMed  Google Scholar 

  85. Mündler N, He J, Jenko S, Vechev M. Self-contradictory hallucinations of large language models: Evaluation, detection and mitigation. arXiv [cs.CL]. 2023. http://arxiv.org/abs/2305.15852.

  86. OpenAI. GPT-4 Technical Report. arXiv [cs.CL]. 2023. http://arxiv.org/abs/2303.08774.

Download references

Acknowledgements

The authors wish to disclose that ChatGPT based on GPT-4 was used to edit and revise some passages in this paper. Specifically, ChatGPT was used as a writing aid to assist in refining human-generated text to enhance the overall clarity of the writing. However, the intellectual contributions, ideas, and conclusions presented herein are exclusively the product of the authors.

Author information

Authors and Affiliations

Authors

Contributions

KB and ALB conceived of initial manuscript concept. KB, PS, PL, and ALB wrote, edited, and approved of the final version of the manuscript.

Corresponding author

Correspondence to Andrew L. Beam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beam, K., Sharma, P., Levy, P. et al. Artificial intelligence in the neonatal intensive care unit: the time is now. J Perinatol 44, 131–135 (2024). https://doi.org/10.1038/s41372-023-01719-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01719-z

Search

Quick links