Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Can the triglyceride-glucose index predict insulin resistance in LGA newborns?

Abstract

Background

The aim of this study is to investigate the TyG index and TG/HDL-C ratio and their relationships with insulin resistance in LGA infants.

Methods

A prospective controlled study was conducted including 65 LGA and gestational age, gender-matched appropriate for gestational age (AGA) neonates. Serum TG, total cholesterol (TC), high-density lipoprotein-cholesterol (HDL-C), insulin and glucose levels were measured within two hours after birth, TyG index and HOMA-IR values were calculated.

Results

TyG index and TG/HDL- C ratio were higher in LGA neonates compared to AGA ones (p = 0.03; p = 0.00, respectively). Compared with AGA newborns, LGA newborns had higher levels of insulin and HOMA-IR (p = 0.00; p = 0.00, respectively). TyG index and TG/HDL-C ratio showed moderate correlation with HOMA-IR (r = 0.59 R2 = 0.35 p < 0.001; r = 0.5 R2 = 0.25 p < 0.001, respectively).

Conclusıon

The results of this study show that LGA newborns have increased levels of TyG index and TG/HDL-C associated with insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The correlations between TyG index, TG/HDL-C and HOMA-IR.

Similar content being viewed by others

Data availability

The data is available for this study.

References

  1. Xu H, Simonet F, Luo ZC. Optimal birth weight percentile cut-offs in defining small- or large-for-gestational-age. Acta Paediatr. 2010;99:550–5.

    Article  CAS  PubMed  Google Scholar 

  2. Freemark M. Placental hormones and the control of fetal growth. J Clin Endocrinol Metab. 2010;95:2054–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kim SY, Sharma AJ, Sappenfield W, Wilson HG, Salihu HM. Association of maternal body mass index, excessive weight gain, and gestational diabetes mellitus with large-for-gestational-age births. Obstet Gynecol. 2014;123:737–44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Lieshout RJ, Boyle MH. Is bigger better? Macrosomia and psychopathology later in life. Obes Rev. 2011;12:e405–411.

    Article  PubMed  Google Scholar 

  5. Weissmann-Brenner A, Simchen MJ, Zilberberg E, Kalter A, Weisz B, Achiron R, et al. Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet Gynecol Scand. 2012;91:844–9.

    Article  PubMed  Google Scholar 

  6. Garcia Carrapato MR. The offspring of gestational diabetes. J Perinat Med. 2003;31:5–11.

    PubMed  Google Scholar 

  7. Evagelidou EN, Kiortsis DN, Bairaktari ET, Giapros VI, Cholevas VK, Tzallas CS, et al. Lipid profile, glucose homeostasis, blood pressure, and obesity-anthropometric markers in macrosomic offspring of nondiabetic mothers. Diabetes Care. 2006;29:1197–201.

    Article  PubMed  Google Scholar 

  8. Chiavaroli V, Giannini C, D’Adamo E, de Giorgis T, Chiarelli F, Mohn A. Insulin resistance and oxidative stress in children born small and large for gestational age. Pediatrics. 2009;124:695–702.

    Article  PubMed  Google Scholar 

  9. Darendeliler F, Poyrazoglu S, Sancakli O, Bas F, Gokcay G, Aki S, et al. Adiponectin is an indicator of insulin resistance in non-obese prepubertal children born large for gestational age (LGA) and is affected by birth weight. Clin Endocrinol. 2009;70:710–6.

    Article  CAS  Google Scholar 

  10. Simental-Mendía LE, Castañeda-Chacón A, Rodríguez-Morán M, Guerrero-Romero F. Birth-weight, insulin levels, and HOMA-IR in newborns at term. BMC Pediatr. 2012;12:94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guerrero-Romero F, Simental-Mendía LE, González-Ortiz M, Martínez-Abundis E, Ramos-Zavala MG, Hernández-González SO, et al. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3347–51.

    Article  CAS  PubMed  Google Scholar 

  12. Abbasi F, Reaven GM. Comparison of two methods using plasma triglyceride concentration as a surrogate estimate of insulin action in nondiabetic subjects: triglycerides × glucose versus triglyceride/high-density lipoprotein cholesterol. Metabolism. 2011;60:1673–6.

    Article  CAS  PubMed  Google Scholar 

  13. Son DH, Lee HS, Lee YJ, Lee JH, Han JH. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr Metab Cardiovasc Dis. 2022;32:596–604.

    Article  CAS  PubMed  Google Scholar 

  14. Gao JW, Hao QY, Gao M, Zhang K, Li XZ, Wang JF, et al. Triglyceride-glucose index in the development of peripheral artery disease: findings from the Atherosclerosis Risk in Communities (ARIC) Study. Cardiovasc Diabetol. 2021;20:126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rodríguez-Morán M, Simental-Mendía LE, Guerrero-Romero F. The triglyceride and glucose index is useful for recognising insulin resistance in children. Acta Paediatr. 2017;106:979–83.

    Article  PubMed  Google Scholar 

  16. Kim JW, Park SH, Kim Y, Im M, Han HS. The cutoff values of indirect indices for measuring insulin resistance for metabolic syndrome in Korean children and adolescents. Ann Pediatr Endocrinol Metab. 2016;21:143–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gesteiro E, Bastida S, Barrios L, Sánchez-Muniz FJ. The triglyceride-glucose index, an insulin resistance marker in newborns? Eur J Pediatr. 2018;177:513–20.

    Article  CAS  PubMed  Google Scholar 

  18. Kabakoğlu Ünsür E, Kutlusoy Güçlü F. Triglyceride-to-high density lipoprotein cholesterol ratio and triglyceride-glucose index in the perinatal period of neonates. J Matern Fetal Neonatal Med. 2021;34:810–7.

    Article  PubMed  Google Scholar 

  19. Buchanan TA, Watanabe RM, Xiang AH. Limitations in surrogate measures of insulin resistance. J Clin Endocrinol Metab. 2010;95:4874–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294:E15–26.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou W, Deng Y, Zhao H, Zhang C. Curent Status of Serum Insulin and C-Peptide Measurement in Clinical Laboratories in China. Ann Lab Med. 2022;42:428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manco M, Grugni G, Die Pietro M, Balsamo A, Di Candia S, Morino GS, et al. Triglyceridesto-HDL cholesterol ratio as screening tool for impaired glucose tolerance in obese children and adolescents. Acta Diabetol. 2016;53:493–8.

    Article  CAS  PubMed  Google Scholar 

  23. American College of Obstetricians and Gynecologists’ Committee on Practice B-O. Practice Bulletin No. 173: Fetal Macrosomia. Obstet Gynecol. 2016;128:e195–e209.

    Google Scholar 

  24. Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2:100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kadakia R, Talbot O, Kuang A, Bain JR, Muehlbauer MJ, Stevens RD, et al. HAPO Study Cooperative Research Group. Cord Blood Metabolomics: Association With Newborn Anthropometrics and C-Peptide Across Ancestries. J Clin Endocrinol Metab. 2019;104:4459–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hou RL, Jin WY, Chen XY, Jin Y, Wang XM, Shao J, et al. Cord blood C-peptide, insulin, HbA1c, and lipids levels in small- and large-for-gestational-age newborns. Med Sci Monit. 2014;20:2097–105.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cutfield WS, Jefferies CA, Jackson WE, Robinson EM, Hofman PL. Evaluation of HOMA and QUICKI as measures of insulin sensitivity in prepubertal children. Pediatr Diabetes. 2003;4:119–25.

    Article  PubMed  Google Scholar 

  28. Seidman DS, Laor A, Gale R, Stevenson DK, Danon YL. A longitudinal study of birth weight and being overweight in late adolescence. Am J Dis Child. 1991;145:782–5.

    CAS  PubMed  Google Scholar 

  29. Hermann GM, Dallas LM, Haskell SE, Roghair RD. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology. 2010;98:238–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mohd Nor NS, Lee S, Bacha F, Tfayli H, Arslanian S. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic-euglycemic clamp. Pediatr Diabetes. 2016;17:458–65.

    Article  CAS  PubMed  Google Scholar 

  31. Unger G, Benozzi SF, Perruzza F, Pennacchiotti GL. Triglycerides and glucose index: a useful indicator of insulin resistance. Endocrinol Nutr. 2014;61:533–40.

    Article  PubMed  Google Scholar 

  32. Krawczyk M, Ruminska M, Witkowska-Sedek E, Majcher A, Pyrzak B. Usefulness of the triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-C) in prediction of metabolic syndrome in Polish obese children and adolescents. Acta Biochim Pol. 2018;65:605–11.

    CAS  PubMed  Google Scholar 

  33. Sumner AE. Ethnic differences in triglyceride levels and high-density lipoprotein lead to underdiagnosis of the metabolic syndrome in black children and adults. J Pediatr. 2009;155:S7.e7–11.

    Article  CAS  PubMed  Google Scholar 

  34. Song T, Su G, Chi Y, Wu T, Xu Y, Chen C. Triglyceride–glucose index predicts the risk of gestational diabetes mellitus: a systematic review and meta-analysis. Gynecol Endocrinol. 2022;38:10–15.

    Article  CAS  PubMed  Google Scholar 

  35. Sánchez-García A, Rodríguez-Gutiérrez R, Saldívar-Rodríguez D, Guzmán-López A, Mancillas-Adame L, González-Nava V, et al. Early triglyceride and glucose index as a risk marker for gestational diabetes mellitus. Int J Gynaecol Obstet. 2020;151:117–23.

    Article  PubMed  Google Scholar 

  36. Kim JA, Kim J, Roh E, Hong SH, Lee YB, Baik SH, et al. Triglyceride and glucose index and the risk of gestational diabetes mellitus: A nationwide population-based cohort study. Diabetes Res Clin Pr. 2021;171:108533.

    Article  CAS  Google Scholar 

  37. Pazhohan A, Rezaee Moradali M, Pazhohan N. Association of first-trimester maternal lipid profiles and triglyceride-glucose index with the risk of gestational diabetes mellitus and large for gestational age newborn. J Matern Fetal Neonatal Med. 2019;32:1167–75.

    Article  CAS  PubMed  Google Scholar 

  38. Yajnik CS, Fall CHD, Coyaji KJ, Hirve SS, Rao S, Barker DJP, et al. Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int J Obes Relat Metab Disord. 2003;27:173–80.

    Article  CAS  PubMed  Google Scholar 

  39. Gillman MW, Ludwig DS. How early should obesity prevention start? N. Engl J Med. 2013;369:2173–5.

    Article  CAS  PubMed  Google Scholar 

  40. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet Gynecol. 2006;195:1100–3.

    Article  PubMed  Google Scholar 

  41. Herrera E, Ortega-Senovilla H. Implications of lipids in neonatal body weight and fat mass in gestational diabetic mothers and non-diabetic controls. Curr Diabetes Rep. 2018;18:7.

    Article  Google Scholar 

  42. Mahindra MP, Sampurna MTA, Mapindra MP, Sutowo, Putri AM. Maternal lipid levels in pregnant women without complications in developing risk of large for gestational age newborns: a study of meta-analysis. F1000 Res. 2021;9:1213.

    Article  Google Scholar 

  43. Mustafa HJ, Seif K, Javinani A, Aghajani F, Orlinsky R, Alvarez MV, et al. Gestational weight gain below instead of within the guidelines per class of maternal obesity: a systematic review and meta-analysis of obstetrical and neonatal outcomes. Am J Obstet Gynecol MFM. 2022;18:100682 https://doi.org/10.1016/j.ajogmf.2022.100682.

    Article  Google Scholar 

  44. Buchanan TA, Watanabe RM, Xiang AH. Limitations in surrogate measures of insulin resistance. J Clin Endocrinol Metab. 2010;95:4874–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

1st author: Design and writing of the article with literature review. 2nd, and 4th author: Data analysis. 3rd,5th, and 6th author: Literature review and revision of manuscript. 7th author: Revision of the manuscript.

Corresponding author

Correspondence to Sumru Kavurt.

Ethics declarations

Competing interests

The authors report no conflict of interest.

Ethical approval

The protocol was approved by the Local Ethics Committee of Etlik Zubeyde Hanım Women’s Health Training and Research Hospital, Ankara City Hospital. Informed written consent was obtained from the parents before enrollment.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavurt, S., Uzlu, S.E., Bas, A.Y. et al. Can the triglyceride-glucose index predict insulin resistance in LGA newborns?. J Perinatol 43, 1119–1124 (2023). https://doi.org/10.1038/s41372-022-01586-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01586-0

Search

Quick links