Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Developmental changes of the fetal and neonatal thyroid gland and functional consequences on the cardiovascular system

Abstract

Thyroid hormones play an important role in the development and function of the cardiac myocyte. Dysregulation of the thyroid hormone milieu affects the fetal cardiac cells via complex molecular mechanisms, either by altering gene expression or directly by affecting post-translational processes. This review offers a comprehensive summary of the effects of thyroid hormones on the developing cardiovascular system and its adaptation. Furthermore, we will highlight the gaps in knowledge and provide suggestions for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parallel presentation of key components of cardiac and thyroid adaptation during the fetal and early neonatal period.
Fig. 2: Structure and function of thyroid hormone receptors (THR).
Fig. 3: Biochemical processes in the cardiac myocyte, associated dynamics and muscle contraction.

Similar content being viewed by others

References

  1. Alemu A, Terefe B, Abebe M, Biadgo B. Thyroid hormone dysfunction during pregnancy: A review. Int J Reprod Biomed. 2016;14:677–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marx H, Amin P, Lazarus JH. Hyperthyroidism and pregnancy. BMJ 2008;336:663–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sferruzzi-Perri AN, Vaughan OR, Forhead AJ, Fowden AL. Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care. 2013;16:298–309.

    Article  CAS  PubMed  Google Scholar 

  4. Wilcoxon JS, Redei EE. Prenatal programming of adult thyroid function by alcohol and thyroid hormones. Am J Physiol Endocrinol Metab. 2004;287:E318–26.

    Article  CAS  PubMed  Google Scholar 

  5. Phillips DI, Barker DJ, Osmond C. Infant feeding, fetal growth and adult thyroid function. Acta Endocrinol. 1993;129:134–8.

    Article  CAS  Google Scholar 

  6. Mourouzis I, Lavecchia AM, Xinaris C. Thyroid hormone signalling: from the dawn of life to the bedside. J Mol Evol. 2020;88:88–103.

    Article  CAS  PubMed  Google Scholar 

  7. Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014;221:R87–103.

    Article  CAS  PubMed  Google Scholar 

  8. Lain SJ, Bentley JP, Wiley V, Roberts CL, Jack M, Wilcken B, et al. Association between borderline neonatal thyroid-stimulating hormone concentrations and educational and developmental outcomes: a population-based record-linkage study. Lancet Diabetes Endocrinol. 2016;4:756–65.

    Article  CAS  PubMed  Google Scholar 

  9. de Zegher F, Pernasetti F, Vanhole C, Devlieger H, Van, den Berghe G, et al. The prenatal role of thyroid hormone evidenced by fetomaternal Pit-1 deficiency. J Clin Endocrinol Metab. 1995;80:3127–30.

    PubMed  Google Scholar 

  10. Yasuda T, Ohnishi H, Wataki K, Minagawa M, Minamitani K, Niimi H. Outcome of a baby born from a mother with acquired juvenile hypothyroidism having undetectable thyroid hormone concentrations. J Clin Endocrinol Metab. 1999;84:2630–2.

    CAS  PubMed  Google Scholar 

  11. Delange F. Iodine deficiency as a cause of brain damage. Postgrad Med J. 2001;77:217–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gereben B, McAninch EA, Ribeiro MO, Bianco AC. Scope and limitations of iodothyronine deiodinases in hypothyroidism. Nat Rev Endocrinol. 2015;11:642–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown RS. Minireview: developmental regulation of thyrotropin receptor gene expression in the fetal and newborn thyroid. Endocrinology 2004;145:4058–61.

    Article  CAS  PubMed  Google Scholar 

  14. Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol. 2013;106:123–70.

    Article  CAS  PubMed  Google Scholar 

  15. Fagman H, Nilsson M. Morphogenesis of the thyroid gland. Mol Cell Endocrinol. 2010;323:35–54.

    Article  CAS  PubMed  Google Scholar 

  16. Contempre B, Jauniaux E, Calvo R, Jurkovic D, Campbell S, de Escobar GM. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J Clin Endocrinol Metab. 1993;77:1719–22.

    CAS  PubMed  Google Scholar 

  17. Morreale de Escobar G, Calvo R, Obregon MJ, Escobar Del Rey F. Contribution of maternal thyroxine to fetal thyroxine pools in normal rats near term. Endocrinology 1990;126:2765–7.

    Article  CAS  PubMed  Google Scholar 

  18. Grijota-Martinez C, Diez D, Morreale de Escobar G, Bernal J, Morte B. Lack of action of exogenously administered T3 on the fetal rat brain despite expression of the monocarboxylate transporter 8. Endocrinology 2011;152:1713–21.

    Article  CAS  PubMed  Google Scholar 

  19. Vulsma T, Gons MH, de Vijlder JJ. Maternal-fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect or thyroid agenesis. N. Engl J Med. 1989;321:13–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hopkins PS, Thorburn GD. The effects of foetal thyroidectomy on the development of the ovine foetus. J Endocrinol. 1972;54:55–66.

    Article  CAS  PubMed  Google Scholar 

  21. Polk DH. Thyroid hormone metabolism during development. Reprod Fertil Dev. 1995;7:469–77.

    Article  CAS  PubMed  Google Scholar 

  22. Liggins GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994;6:141–50.

    Article  CAS  PubMed  Google Scholar 

  23. Forhead AJ, Curtis K, Kaptein E, Visser TJ, Fowden AL. Developmental control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta near term. Endocrinology 2006;147:5988–94.

    Article  CAS  PubMed  Google Scholar 

  24. Breall JA, Rudolph AM, Heymann MA. Role of thyroid hormone in postnatal circulatory and metabolic adjustments. J Clin Invest. 1984;73:1418–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.

    Article  CAS  PubMed  Google Scholar 

  26. Pliam NB, Goldfine ID. High affinity thyroid hormone binding sites on purified rat liver plasma membranes. Biochem Biophys Res Commun. 1977;79:166–72.

    Article  CAS  PubMed  Google Scholar 

  27. Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, et al. Identification of thyroid hormone transporters. Biochem Biophys Res Commun. 1999;254:497–501.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor PM, Ritchie JW. Tissue uptake of thyroid hormone by amino acid transporters. Best Pr Res Clin Endocrinol Metab. 2007;21:237–51.

    Article  CAS  Google Scholar 

  29. Visser WE, Friesema EC, Jansen J, Visser TJ. Thyroid hormone transport by monocarboxylate transporters. Best Pr Res Clin Endocrinol Metab. 2007;21:223–36.

    Article  CAS  Google Scholar 

  30. Jansen J, Friesema EC, Milici C, Visser TJ. Thyroid hormone transporters in health and disease. Thyroid 2005;15:757–68.

    Article  CAS  PubMed  Google Scholar 

  31. Jansen J, Friesema EC, Kester MH, Schwartz CE, Visser TJ. Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology 2008;149:2184–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krenning EP, Docter R, Bernard B, Visser T, Hennemann G. Decreased transport of thyroxine (T4), 3,3’,5-triiodothyronine (T3) and 3,3’,5’-triiodothyronine (rT3) into rat hepatocytes in primary culture due to a decrease of cellular ATP content and various drugs. FEBS Lett. 1982;140:229–33.

    Article  CAS  PubMed  Google Scholar 

  33. Francon J, Chantoux F, Blondeau JP. Carrier-mediated transport of thyroid hormones into rat glial cells in primary culture. J Neurochem. 1989;53:1456–63.

    Article  CAS  PubMed  Google Scholar 

  34. Everts ME, Docter R, van Buuren JC, van Koetsveld PM, Hofland LJ, de Jong M, et al. Evidence for carrier-mediated uptake of triiodothyronine in cultured anterior pituitary cells of euthyroid rats. Endocrinology 1993;132:1278–85.

    Article  CAS  PubMed  Google Scholar 

  35. Yan Z, Hinkle PM. Saturable, stereospecific transport of 3,5,3’-triiodo-L-thyronine and L-thyroxine into GH4C1 pituitary cells. J Biol Chem. 1993;268:20179–84.

    Article  CAS  PubMed  Google Scholar 

  36. Everts ME, Verhoeven FA, Bezstarosti K, Moerings EP, Hennemann G, Visser TJ, et al. Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 1996;137:4235–42.

    Article  CAS  PubMed  Google Scholar 

  37. Centanni M, Pontecorvi A, Robbins J. Insulin effect on thyroid hormone uptake in rat skeletal muscle. Metabolism 1988;37:626–30.

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell AM, Tom M, Mortimer RH. Thyroid hormone export from cells: contribution of P-glycoprotein. J Endocrinol. 2005;185:93–8.

    Article  CAS  PubMed  Google Scholar 

  39. Visser WE, Wong WS, van Mullem AA, Friesema EC, Geyer J, Visser TJ. Study of the transport of thyroid hormone by transporters of the SLC10 family. Mol Cell Endocrinol. 2010;315:138–45.

    Article  CAS  PubMed  Google Scholar 

  40. Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 2008;22:1357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Alkemade A, Friesema EC, Unmehopa UA, Fabriek BO, Kuiper GG, Leonard JL, et al. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus. J Clin Endocrinol Metab. 2005;90:4322–34.

    Article  CAS  PubMed  Google Scholar 

  42. Heuer H, Maier MK, Iden S, Mittag J, Friesema EC, Visser TJ, et al. The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 2005;146:1701–6.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 2008;149:6251–61.

    Article  CAS  PubMed  Google Scholar 

  44. Sugiura M, Nagaoka M, Yabuuchi H, Akaike T. Overexpression of MCT8 enhances the differentiation of ES cells into neural progenitors. Biochem Biophys Res Commun. 2007;360:741–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol. 2000;62:439–66.

    Article  CAS  PubMed  Google Scholar 

  46. Calvo RM, Jauniaux E, Gulbis B, Asuncion M, Gervy C, Contempre B, et al. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab. 2002;87:1768–77.

    Article  CAS  PubMed  Google Scholar 

  47. Kester MH, Martinez de Mena R, Obregon MJ, Marinkovic D, Howatson A, Visser TJ, et al. Iodothyronine levels in the human developing brain: major regulatory roles of iodothyronine deiodinases in different areas. J Clin Endocrinol Metab. 2004;89:3117–28.

    Article  CAS  PubMed  Google Scholar 

  48. Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122:3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 1988;336:262–5.

    Article  CAS  PubMed  Google Scholar 

  51. Kumar R, Thompson EB. The structure of the nuclear hormone receptors. Steroids 1999;64:310–9.

    Article  CAS  PubMed  Google Scholar 

  52. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992;355:446–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991;65:1255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Naar AM, Boutin JM, Lipkin SM, Yu VC, Holloway JM, Glass CK, et al. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 1991;65:1267–79.

    Article  CAS  PubMed  Google Scholar 

  55. Lazar MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev. 1993;14:184–93.

    CAS  PubMed  Google Scholar 

  56. Hodin RA, Lazar MA, Chin WW. Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J Clin Invest. 1990;85:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kumar R, Johnson BH, Thompson EB. Overview of the structural basis for transcription regulation by nuclear hormone receptors. Essays Biochem. 2004;40:27–39.

    Article  CAS  PubMed  Google Scholar 

  58. Gupta MP. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J Mol Cell Cardiol. 2007;43:388–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ojamaa K, Klemperer JD, MacGilvray SS, Klein I, Samarel A. Thyroid hormone and hemodynamic regulation of beta-myosin heavy chain promoter in the heart. Endocrinology 1996;137:802–8.

    Article  CAS  PubMed  Google Scholar 

  60. Morkin E. Regulation of myosin heavy chain genes in the heart. Circulation 1993;87:1451–60.

    Article  CAS  PubMed  Google Scholar 

  61. Morkin E, Pennock GD, Spooner PH, Bahl JJ, Goldman S. Clinical and experimental studies on the use of 3,5-diiodothyropropionic acid, a thyroid hormone analogue, in heart failure. Thyroid 2002;12:527–33.

    Article  CAS  PubMed  Google Scholar 

  62. Edwards JG, Bahl JJ, Flink IL, Cheng SY, Morkin E. Thyroid hormone influences beta myosin heavy chain (beta MHC) expression. Biochem Biophys Res Commun. 1994;199:1482–8.

    Article  CAS  PubMed  Google Scholar 

  63. van Tuyl M, Blommaart PE, de Boer PA, Wert SE, Ruijter JM, Islam S, et al. Prenatal exposure to thyroid hormone is necessary for normal postnatal development of murine heart and lungs. Dev Biol. 2004;272:104–17.

    Article  PubMed  Google Scholar 

  64. Morkin E. Control of cardiac myosin heavy chain gene expression. Microsc Res Tech. 2000;50:522–31.

    Article  CAS  PubMed  Google Scholar 

  65. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4:566–77.

    Article  CAS  PubMed  Google Scholar 

  66. Disatnik MH, Shainberg A. Regulation of beta-adrenoceptors by thyroid hormone and amiodarone in rat myocardiac cells in culture. Biochem Pharm. 1991;41:1039–44.

    Article  CAS  PubMed  Google Scholar 

  67. Xia HJ, Dai DZ, Dai Y. Up-regulated inflammatory factors endothelin, NFkappaB, TNFalpha and iNOS involved in exaggerated cardiac arrhythmias in l-thyroxine-induced cardiomyopathy are suppressed by darusentan in rats. Life Sci. 2006;79:1812–9.

    Article  CAS  PubMed  Google Scholar 

  68. Shenoy R, Klein I, Ojamaa K. Differential regulation of SR calcium transporters by thyroid hormone in rat atria and ventricles. Am J Physiol Heart Circ Physiol. 2001;281:H1690–6.

    Article  CAS  PubMed  Google Scholar 

  69. Awais D, Shao Y, Ismail-Beigi F. Thyroid hormone regulation of myocardial Na/K-ATPase gene expression. J Mol Cell Cardiol. 2000;32:1969–80.

    Article  CAS  PubMed  Google Scholar 

  70. Shimoni Y, Banno H. Alpha-adrenergic modulation of transient outward current in hyperthyroid rabbit myocytes. Am J Physiol. 1993;264:H74–7.

    CAS  PubMed  Google Scholar 

  71. Sunagawa M, Yamakawa M, Shimabukuro M, Higa N, Takasu N, Kosugi T. Electrophysiologic characteristics of atrial myocytes in levo-thyroxine-treated rats. Thyroid 2005;15:3–11.

    Article  CAS  PubMed  Google Scholar 

  72. Kosunen KJ, Pakarinen A. Correlations between plasma renin activity, angiotensin II, and aldosterone. J Clin Endocrinol Metab. 1978;47:665–6.

    Article  CAS  PubMed  Google Scholar 

  73. Velaphi SC, Despain K, Roy T, Rosenfeld CR. The renin-angiotensin system in conscious newborn sheep: metabolic clearance rate and activity. Pediatr Res. 2007;61:681–6.

    Article  CAS  PubMed  Google Scholar 

  74. Chen K, Carey LC, Valego NK, Rose JC. Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2007;293:R701–6.

    Article  CAS  PubMed  Google Scholar 

  75. Rosenfeld CR, Gresores A, Roy TA, Magness RR. Comparison of ANG II in fetal and pregnant sheep: metabolic clearance and vascular sensitivity. Am J Physiol. 1995;268:E237–47.

    CAS  PubMed  Google Scholar 

  76. Mori Y, Nishikawa M, Toyoda N, Yonemoto T, Matsubara H, Inada M. Iodothyronine 5’-deiodinase activity in cultured rat myocardial cells: characteristics and effects of triiodothyronine and angiotensin II. Endocrinology 1991;128:3105–12.

    Article  CAS  PubMed  Google Scholar 

  77. Reini SA, Wood CE, Keller-Wood M. The ontogeny of genes related to ovine fetal cardiac growth. Gene Expr Patterns. 2009;9:122–8.

    Article  CAS  PubMed  Google Scholar 

  78. Carneiro-Ramos MS, Diniz GP, Nadu AP, Almeida J, Vieira RL, Santos RA, et al. Blockage of angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation. Basic Res Cardiol. 2010;105:325–35.

    Article  CAS  PubMed  Google Scholar 

  79. Chattergoon NN, Louey S, Stork P, Giraud GD, Thornburg KL. Mid-gestation ovine cardiomyocytes are vulnerable to mitotic suppression by thyroid hormone. Reprod Sci. 2012;19:642–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jonker SS, Louey S. Endocrine and other physiologic modulators of perinatal cardiomyocyte endowment. J Endocrinol. 2016;228:R1–18.

    Article  CAS  PubMed  Google Scholar 

  81. Jonker SS, Louey S, Giraud GD, Thornburg KL, Faber JJ. Timing of cardiomyocyte growth, maturation, and attrition in perinatal sheep. FASEB J 2015;29:4346–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol. 2007;102:1130–42.

    Article  PubMed  Google Scholar 

  83. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, et al. Evidence for cardiomyocyte renewal in humans. Science 2009;324:98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res. 1991;68:1560–8.

    Article  CAS  PubMed  Google Scholar 

  85. Burrell JH, Boyn AM, Kumarasamy V, Hsieh A, Head SI, Lumbers ER. Growth and maturation of cardiac myocytes in fetal sheep in the second half of gestation. Anat Rec A Disco Mol Cell Evol Biol. 2003;274:952–61.

    Article  Google Scholar 

  86. Barbera A, Giraud GD, Reller MD, Maylie J, Morton MJ, Thornburg KL. Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1157–64.

    Article  CAS  PubMed  Google Scholar 

  87. Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T, Namiki A, et al. Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes. Cardiovasc Res. 2003;58:535–48.

    Article  CAS  PubMed  Google Scholar 

  88. Segar JL, Volk KA, Lipman MH, Scholz TD. Thyroid hormone is required for growth adaptation to pressure load in the ovine fetal heart. Exp Physiol. 2013;98:722–33.

    Article  CAS  PubMed  Google Scholar 

  89. Chattergoon NN, Giraud GD, Thornburg KL. Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro. J Endocrinol. 2007;192:R1–8.

    Article  CAS  PubMed  Google Scholar 

  90. Pracyk JB, Slotkin TA. Thyroid hormone regulates ontogeny of beta-adrenergic receptors and adenylate cyclase in rat heart and kidney: effects of propylthiouracil-induced perinatal hypothyroidism. J Pharm Exp Ther. 1992;261:951–8.

    CAS  Google Scholar 

  91. Slotkin TA, Whitmore WL, Orband-Miller L, Queen KL, Haim K. Beta adrenergic control of macromolecule synthesis in neonatal rat heart, kidney and lung: relationship to sympathetic neuronal development. J Pharm Exp Ther. 1987;243:101–9.

    CAS  Google Scholar 

  92. Robinson RB. Autonomic receptor−effector coupling during post-natal development. Cardiovasc Res. 1996;31:E68-76.

  93. Birk E, Tyndall MR, Erickson LC, Rudolph AM, Roberts JM. Effects of thyroid hormone on myocardial adrenergic beta-receptor responsiveness and function during late gestation. Pediatr Res. 1992;31:468–73.

    Article  CAS  PubMed  Google Scholar 

  94. Chen K, Carey LC, Valego NK, Liu J, Rose JC. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1006–14.

    Article  CAS  PubMed  Google Scholar 

  95. Pracyk JB, Slotkin TA. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and ornithine decarboxylase in rat heart and kidney. J Dev Physiol. 1991;16:251–61.

    CAS  PubMed  Google Scholar 

  96. Padbury JF, Klein AH, Polk DH, Lam RW, Hobel C, Fisher DA. Effect of thyroid status on lung and heart beta-adrenergic receptors in fetal and newborn sheep. Dev Pharm Ther. 1986;9:44–53.

    Article  CAS  Google Scholar 

  97. Walker DW, Schuijers JA. Effect of thyroidectomy on cardiovascular responses to hypoxia and tyramine infusion in fetal sheep. J Dev Physiol. 1989;12:337–45.

    CAS  PubMed  Google Scholar 

  98. Forhead AJ, Fowden AL. Effects of thyroid hormones on pulmonary and renal angiotensin-converting enzyme concentrations in fetal sheep near term. J Endocrinol. 2002;173:143–50.

    Article  CAS  PubMed  Google Scholar 

  99. Liu J, Chen K, Valego NK, Carey LC, Rose JC. Ontogeny and effects of thyroid hormone on beta1-adrenergic receptor mRNA expression in ovine fetal kidney cortex. J Soc Gynecol Investig. 2005;12:563–9.

    Article  CAS  PubMed  Google Scholar 

  100. Fowden AL, Mapstone J, Forhead AJ. Regulation of glucogenesis by thyroid hormones in fetal sheep during late gestation. J Endocrinol. 2001;170:461–9.

    Article  CAS  PubMed  Google Scholar 

  101. Tribulova N, Knezl V, Shainberg A, Seki S, Soukup T. Thyroid hormones and cardiac arrhythmias. Vasc Pharm. 2010;52:102–12.

    Article  CAS  Google Scholar 

  102. Sun ZQ, Ojamaa K, Nakamura TY, Artman M, Klein I, Coetzee WA. Thyroid hormone increases pacemaker activity in rat neonatal atrial myocytes. J Mol Cell Cardiol. 2001;33:811–24.

    Article  CAS  PubMed  Google Scholar 

  103. Renaudon B, Lenfant J, Decressac S, Bois P. Thyroid hormone increases the conductance density of f-channels in rabbit sino-atrial node cells. Recept Channels. 2000;7:1–8.

    CAS  PubMed  Google Scholar 

  104. Komiya N, Isomoto S, Nakao K, Hayano M, Yano K. Electrophysiological abnormalities of the atrial muscle in patients with paroxysmal atrial fibrillation associated with hyperthyroidism. Clin Endocrinol. 2002;56:39–44.

    Article  Google Scholar 

  105. Oner T, Ozdemir R, Doksoz O, Yozgat Y, Karadeniz C, Demirpence S, et al. Cardiac Function In Newborns With Congenital Hypothyroidism: Association With Thyroid-stimulating Hormone Levels. J Clin Res Pediatr Endocrinol. 2015;7:307–11.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Subramonian D, Wu YJ, Amed S, Sanatani S. Hyperthyroidism with atrial fibrillation in children: a case report and review of the literature. Front Endocrinol (Lausanne). 2021;12:689497.

    Article  PubMed  Google Scholar 

  107. Ceresnak SR, Liberman L, Silver ES, Fishberger SB, Gates GJ, Nappo L, et al. Lone atrial fibrillation in the young - perhaps not so “lone”? J Pediatr. 2013;162:827–31.

    Article  PubMed  Google Scholar 

  108. Kirsh JA, Walsh EP, Triedman JK. Prevalence of and risk factors for atrial fibrillation and intra-atrial reentrant tachycardia among patients with congenital heart disease. Am J Cardiol. 2002;90:338–40.

    Article  PubMed  Google Scholar 

  109. Crie JS, Wakeland JR, Mayhew BA, Wildenthal K. Direct anabolic effects of thyroid hormone on isolated mouse heart. Am J Physiol. 1983;245:C328–33.

    Article  CAS  PubMed  Google Scholar 

  110. Castello A, Rodriguez-Manzaneque JC, Camps M, Perez-Castillo A, Testar X, Palacin M, et al. Perinatal hypothyroidism impairs the normal transition of GLUT4 and GLUT1 glucose transporters from fetal to neonatal levels in heart and brown adipose tissue. Evidence for tissue-specific regulation of GLUT4 expression by thyroid hormone. J Biol Chem. 1994;269:5905–12.

    Article  CAS  PubMed  Google Scholar 

  111. Nishiki K, Erecinska M, Wilson DF, Cooper S. Evaluation of oxidative phosphorylation in hearts from euthyroid, hypothyroid, and hyperthyroid rats. Am J Physiol. 1978;235:C212–9.

    Article  CAS  PubMed  Google Scholar 

  112. Pantos C, Mourouzis I, Saranteas T, Paizis I, Xinaris C, Malliopoulou V, et al. Thyroid hormone receptors alpha1 and beta1 are downregulated in the post-infarcted rat heart: consequences on the response to ischaemia-reperfusion. Basic Res Cardiol. 2005;100:422–32.

    Article  CAS  PubMed  Google Scholar 

  113. Pantos C, Malliopoulou V, Varonos DD, Cokkinos DV. Thyroid hormone and phenotypes of cardioprotection. Basic Res Cardiol. 2004;99:101–20.

    Article  CAS  PubMed  Google Scholar 

  114. Shin DH, Lee MJ, Kim SJ, Oh HJ, Kim HR, Han JH, et al. Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;97:2732–40.

    Article  CAS  PubMed  Google Scholar 

  115. Mourouzis I, Kostakou E, Galanopoulos G, Mantzouratou P, Pantos C. Inhibition of thyroid hormone receptor alpha1 impairs post-ischemic cardiac performance after myocardial infarction in mice. Mol Cell Biochem. 2013;379:97–105.

    Article  CAS  PubMed  Google Scholar 

  116. Gruters A, Biebermann H, Krude H. Neonatal thyroid disorders. Horm Res. 2003;59:24–9.

    PubMed  Google Scholar 

  117. Marks SD. Nonthyroidal illness syndrome in children. Endocrine 2009;36:355–67.

    Article  CAS  PubMed  Google Scholar 

  118. Williams FL, Visser TJ, Hume R. Transient hypothyroxinaemia in preterm infants. Early Hum Dev. 2006;82:797–802.

    Article  CAS  PubMed  Google Scholar 

  119. Murphy N, Hume R, van Toor H, Matthews TG, Ogston SA, Wu SY, et al. The hypothalamic-pituitary-thyroid axis in preterm infants; changes in the first 24h of postnatal life. J Clin Endocrinol Metab. 2004;89:2824–31.

    Article  CAS  PubMed  Google Scholar 

  120. Srinivasan R, Harigopal S, Turner S, Cheetham T. Permanent and transient congenital hypothyroidism in preterm infants. Acta Paediatr. 2012;101:e179–82.

    Article  PubMed  Google Scholar 

  121. Economidou F, Douka E, Tzanela M, Nanas S, Kotanidou A. Thyroid function during critical illness. Hormones. 2011;10:117–24.

    Article  PubMed  Google Scholar 

  122. Sciacchitano S, Capalbo C, Napoli C, Anibaldi P, Salvati V, De Vitis C, et al. Nonthyroidal illness syndrome: to treat or not to treat? Have we answered the question? A review of metanalyses. Front Endocrinol. 2022;13:850328.

    Article  Google Scholar 

  123. Rooman RP, Du Caju MV, De Beeck LO, Docx M, Van Reempts P, Van Acker KJ. Low thyroxinaemia occurs in the majority of very preterm newborns. Eur J Pediatr. 1996;155:211–5.

    Article  CAS  PubMed  Google Scholar 

  124. Frank JE, Faix JE, Hermos RJ, Mullaney DM, Rojan DA, Mitchell ML, et al. Thyroid function in very low birth weight infants: effects on neonatal hypothyroidism screening. J Pediatr. 1996;128:548–54.

    Article  CAS  PubMed  Google Scholar 

  125. Linder N, Davidovitch N, Reichman B, Kuint J, Lubin D, Meyerovitch J, et al. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J Pediatr. 1997;131:434–9.

    Article  CAS  PubMed  Google Scholar 

  126. Aitken J, Williams FL. A systematic review of thyroid dysfunction in preterm neonates exposed to topical iodine. Arch Dis Child Fetal Neonatal Ed. 2014;99:F21–8.

    Article  PubMed  Google Scholar 

  127. Rose S, Brown R, Wilkins L, Foley T, Kaplowitz P, Kaye C, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006;117:2290–303.

    Article  Google Scholar 

  128. Filippi L, Pezzati M, Cecchi A, Poggi C. Dopamine infusion: a possible cause of undiagnosed congenital hypothyroidism in preterm infants. Pediatr Crit Care Med. 2006;7:249–51.

    Article  PubMed  Google Scholar 

  129. Mao S, Wang Y, Jiang G, Zhao Z. Effects of levothyroxine therapy on left and right ventricular function in neonates with congenital hypothyroidism: a tissue Doppler echocardiography study. Eur J Pediatr. 2007;166:1261–5.

    Article  CAS  PubMed  Google Scholar 

  130. Salerno M, Oliviero U, Lettiero T, Guardasole V, Mattiacci DM, Saldamarco L, et al. Long-term cardiovascular effects of levothyroxine therapy in young adults with congenital hypothyroidism. J Clin Endocrinol Metab. 2008;93:2486–91.

    Article  CAS  PubMed  Google Scholar 

  131. Raymond J, LaFranchi SH. Fetal and neonatal thyroid function: review and summary of significant new findings. Curr Opin Endocrinol Diabetes Obes. 2010;17:1–7.

    Article  PubMed  Google Scholar 

  132. Osborn DA, Hunt RW. Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2007;1:CD005948.

    Google Scholar 

  133. Osborn DA, Hunt RW. Postnatal thyroid hormones for preterm infants with transient hypothyroxinaemia. Cochrane Database Syst Rev. 2007;1:CD005945.

    Google Scholar 

  134. Yoon SA, Chang YS, Yang M, Ahn SY, Sung SI, Cho HS, et al. Effect of levothyroxine supplementation in extremely low birth weight infants with transient hypothyroxinemia of prematurity. Sci Rep. 2022;12:9717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Portman MA, Fearneyhough C, Ning XH, Duncan BW, Rosenthal GL, Lupinetti FM. Triiodothyronine repletion in infants during cardiopulmonary bypass for congenital heart disease. J Thorac Cardiovasc Surg. 2000;120:604–8.

    Article  CAS  PubMed  Google Scholar 

  136. Leeuwen L, van Heijst AFJ, van Rosmalen J, de Rijke YB, Beurskens L, Tibboel D, et al. Changes in thyroid hormone concentrations during neonatal extracorporeal membrane oxygenation. J Perinatol. 2017;37:906–10.

    Article  CAS  PubMed  Google Scholar 

  137. Stewart DL, Ssemakula N, MacMillan DR, Goldsmith LJ, Cook LN. Thyroid function in neonates with severe respiratory failure on extracorporeal membrane oxygenation. Perfusion 2001;16:469–75.

    Article  CAS  PubMed  Google Scholar 

  138. Flores S, Loomba RS, Checchia PA, Graham EM, Bronicki RA. Thyroid hormone (Triiodothyronine) therapy in children after congenital heart surgery: a meta-analysis. Semin Thorac Cardiovasc Surg. 2020;32:87–95.

    Article  PubMed  Google Scholar 

  139. Portman MA, Slee A, Olson AK, Cohen G, Karl T, Tong E, et al. Triiodothyronine supplementation in infants and children undergoing Cardiopulmonary Bypass (TRICC): a multicenter placebo-controlled randomized trial: age analysis. Circulation. 2010;122:S224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Correia MF, Maria AT, Prado S, Limbert C. Neonatal thyrotoxicosis caused by maternal autoimmune hyperthyroidism. BMJ Case Rep. 2015;209:283–85.

  141. Angelis D, Kubicky RA, Zubrow AB. Methimazole associated neutropenia in a preterm neonate treated for hyperthyroidism. Case Rep. Endocrinol. 2015;680:191–96.

    Google Scholar 

  142. Doucette S, Tierney A, Roggensack A, Yusuf K. Neonatal thyrotoxicosis with tricuspid valve regurgitation and hydrops in a preterm infant born to a mother with graves’ disease. AJP Rep. 2018;8:e85–8.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Oden J, Cheifetz IM. Neonatal thyrotoxicosis and persistent pulmonary hypertension necessitating extracorporeal life support. Pediatrics 2005;115:e105–8.

    Article  PubMed  Google Scholar 

  144. Obeid R, Kalra VK, Arora P, Quist F, Moltz KC, Chouthai NS Neonatal thyrotoxicosis presenting as persistent pulmonary hypertension. BMJ Case Rep. 2012;593:1–3.

Download references

Author information

Authors and Affiliations

Authors

Contributions

DA and IK contributed to the concept of the paper, wrote the initial and revised drafts of this manuscript, and approved the final manuscript as submitted. AV critically reviewed the manuscript and approved as is. MC, CC, JJ, SG, and MM contributed to the conceptualization of the paper, reviewed, and revised the manuscript, and approved the final manuscript as submitted. IK is a third-year pediatric resident.

Corresponding author

Correspondence to Dimitrios Angelis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotsopoulou, I., Vyas, A.K., Cory, M.J. et al. Developmental changes of the fetal and neonatal thyroid gland and functional consequences on the cardiovascular system. J Perinatol 42, 1576–1586 (2022). https://doi.org/10.1038/s41372-022-01559-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01559-3

Search

Quick links