Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Measuring intrauterine growth in healthy pregnancies using quantitative magnetic resonance imaging

Abstract

Objective

The aim of this study was to determine in utero fetal-placental growth patterns using in vivo three-dimensional (3D) quantitative magnetic resonance imaging (qMRI).

Study design

Healthy women with singleton pregnancies underwent fetal MRI to measure fetal body, placenta, and amniotic space volumes. The fetal-placental ratio (FPR) was derived using 3D fetal body and placental volumes (PV). Descriptive statistics were used to describe the association of each measurement with increasing gestational age (GA) at MRI.

Results

Fifty-eight (58) women underwent fetal MRI between 16 and 38 completed weeks gestation (mean = 28.12 ± 6.33). PV and FPR varied linearly with GA at MRI (rPV,GA = 0.83, rFPR,GA = 0.89, p value < 0.001). Fetal volume varied non-linearly with GA (p value < 0.01).

Conclusions

We describe in-utero growth trajectories of fetal-placental volumes in healthy pregnancies using qMRI. Understanding healthy in utero development can establish normative benchmarks where departures from normal may identify early in utero placental failure prior to the onset of fetal harm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vivo placental volumes across gestation in a cohort of healthy, singleton pregnancies.
Fig. 2: In vivo measures of the fetal-placental ratio (ratio of fetal volume to placental volume) across gestation in a cohort of healthy, singleton pregnancies.
Fig. 3: In vivo amniotic fluid volumes across gestation in a cohort of healthy, singleton pregnancies.
Fig. 4: In vivo fetal body volumes across gestation in a cohort of healthy, singleton pregnancies.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiological Rev. 2016;96:1509–65.

    Article  CAS  Google Scholar 

  2. Jansson T, Powell TL. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113:1–13.

    Article  CAS  Google Scholar 

  3. Morgan TK. Role of the placenta in preterm birth: a review. Am J Perinatol. 2016;33:258–66.

    Article  PubMed  Google Scholar 

  4. Salavati N, Smies M, Ganzevoort W, Charles AK, Erwich JJ, Plosch T, et al. The possible role of placental morphometry in the detection of fetal growth restriction. Front Physiol. 2018;9:1884.

    Article  PubMed  Google Scholar 

  5. Silver RM. Examining the link between placental pathology, growth restriction, and stillbirth. Best Pract Res Clin Obstet Gynaecol. 2018;49:89–102.

    Article  PubMed  Google Scholar 

  6. Gheorghe CP, Goyal R, Mittal A, Longo LD. Gene expression in the placenta: maternal stress and epigenetic responses. Int J Dev Biol. 2010;54:507–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zur RL, Kingdom JC, Parks WT, Hobson SR. The placental basis of fetal growth restriction. Obstet Gynecol Clin North Am. 2020;47:81–98.

    Article  PubMed  Google Scholar 

  8. Al-Haddad BJS, Oler E, Armistead B, Elsayed NA, Weinberger DR, Bernier R, et al. The fetal origins of mental illness. Am J Obstet Gynecol. 2019;221:549–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thornburg KL, Kolahi K, Pierce M, Valent A, Drake R, Louey S. Biological features of placental programming. Placenta. 2016;48:S47–S53.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hayward CE, Lean S, Sibley CP, Jones RL, Wareing M, Greenwood SL, et al. Placental adaptation: what can we learn from birthweight: placental weight ratio? Front Physiol. 2016;7:28.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salavati N, Gordijn SJ, Sovio U, Zill EHR, Gebril A, Charnock-Jones DS, et al. Birth weight to placenta weight ratio and its relationship to ultrasonic measurements, maternal and neonatal morbidity: a prospective cohort study of nulliparous women. Placenta. 2018;63:45–52.

    Article  CAS  PubMed  Google Scholar 

  12. Fowden AL, Sferruzzi-Perri AN, Coan PM, Constancia M, Burton GJ. Placental efficiency and adaptation: endocrine regulation. J Physiol. 2009;587:3459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ganer Herman H, Miremberg H, Schreiber L, Bar J, Kovo M. The association between disproportionate birth weight to placental weight ratio, clinical outcome, and placental histopathological lesions. Fetal Diagn Ther. 2017;41:300–6.

    Article  PubMed  Google Scholar 

  14. Alfirevic Z, Stampalija T, Dowswell T. Fetal and umbilical Doppler ultrasound in high-risk pregnancies. Cochrane Database Syst Rev. 2017;6:CD007529.

    PubMed  Google Scholar 

  15. Lindqvist PG, Molin J. Does antenatal identification of small-for-gestational age fetuses significantly improve their outcome? Ultrasound Obstet Gynecol. 2005;25:258–64.

    Article  CAS  PubMed  Google Scholar 

  16. Narendran N, Yusuf K. Fetal doppler assessment in neonatal care: analysis of fetal doppler abnormalities and neonatal outcomes. Neoreviews. 2019;20:e575–e583.

    Article  PubMed  Google Scholar 

  17. Allen BC, Leyendecker JR. Placental evaluation with magnetic resonance. Radio Clin North Am. 2013;51:955–66.

    Article  Google Scholar 

  18. Andescavage N, Dahdouh S, Jacobs M, Yewale S, Bulas D, Iqbal S, et al. In vivo textural and morphometric analysis of placental development in healthy & growth-restricted pregnancies using magnetic resonance imaging. Pediatr Res. 2019;85:974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Andescavage N, duPlessis A, Metzler M, Bulas D, Vezina G, Jacobs M, et al. In vivo assessment of placental and brain volumes in growth-restricted fetuses with and without fetal Doppler changes using quantitative 3D MRI. J Perinatol. 2017;37:1278–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Andescavage N, Yarish A, Donofrio M, Bulas D, Evangelou I, Vezina G, et al. 3-D volumetric MRI evaluation of the placenta in fetuses with complex congenital heart disease. Placenta. 2015;36:1024–30.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Andescavage NN, du Plessis A, Limperopoulos C. Advanced MR imaging of the placenta: exploring the in utero placenta-brain connection. Semin Perinatol. 2015;39:113–23.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dahdouh S, Andescavage N, Yewale S, Yarish A, Lanham D, Bulas D, et al. In vivo placental MRI shape and textural features predict fetal growth restriction and postnatal outcome. J Magn Reson Imaging. 2018;47:449–58.

    Article  PubMed  Google Scholar 

  23. Gudmundsson S, Dubiel M, Sladkevicius P. Placental morphologic and functional imaging in high-risk pregnancies. Semin Perinatol. 2009;33:270–80.

    Article  PubMed  Google Scholar 

  24. Sohn YS, Kim MJ, Kwon JY, Kim YH, Park YW. The usefulness of fetal MRI for prenatal diagnosis. Yonsei Med J. 2007;48:671–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.

    Article  PubMed  Google Scholar 

  26. Zun Z, Zaharchuk G, Andescavage NN, Donofrio MT, Limperopoulos C. Non-invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity-selective arterial spin labeled MRI. Sci Rep. 2017;7:16126.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yushkevich PA, Piven J, Hazlett, HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 2006;31:1116–28.

  28. Zou KH, Wells WM 3rd, Kikinis R, Warfield SK. Three validation metrics for automated probabilistic image segmentation of brain tumours. Stat Med. 2004;23:1259–82.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Duncan KR, Sahota DS, Gowland PA, Moore R, Chang A, Baker PN, et al. Multilevel modeling of fetal and placental growth using echo-planar magnetic resonance imaging. J Soc Gynecol Investig. 2001;8:285–90.

    Article  CAS  PubMed  Google Scholar 

  30. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Team RC. R: A language and environment for statistical computing. 2020. https://www.R-project.org/.

  32. Baschat AA. Fetal responses to placental insufficiency: an update. BJOG. 2004;111:1031–41.

    Article  CAS  PubMed  Google Scholar 

  33. Langhoff L, Gronbeck L, von Huth S, Axelsson A, Jorgensen C, Thomsen C, et al. Placental growth during normal pregnancy—a magnetic resonance imaging study. Gynecol Obstet Investig. 2017;82:462–7.

    Article  Google Scholar 

  34. Leon RL, Li KT, Brown BP. A retrospective segmentation analysis of placental volume by magnetic resonance imaging from first trimester to term gestation. Pediatr Radio. 2018;48:1936–44.

    Article  Google Scholar 

  35. Carlin A, Kadji C, De Angelis R, Cannie MM, Jani JC. Prenatal prediction of small-for-gestational age neonates using MR imaging: comparison with conventional 2D ultrasound. J Matern Fetal Neonatal Med. 2019;32:1673–81.

    Article  PubMed  Google Scholar 

  36. Kadji C, Cannie MM, Resta S, Guez D, Abi-Khalil F, De Angelis R, et al. Magnetic resonance imaging for prenatal estimation of birthweight in pregnancy: review of available data, techniques, and future perspectives. Am J Obstet Gynecol. 2019;220:428–39.

    Article  PubMed  Google Scholar 

  37. Malin GL, Bugg GJ, Takwoingi Y, Thornton JG, Jones NW. Antenatal magnetic resonance imaging versus ultrasound for predicting neonatal macrosomia: a systematic review and meta-analysis. BJOG: Int J Obstet Gynaecol. 2016;123:77–88.

    Article  CAS  Google Scholar 

  38. Baker PN, Johnson IR, Gowland PA, Hykin J, Harvey PR, Freeman A, et al. Fetal weight estimation by echo-planar magnetic resonance imaging. Lancet. 1994;343:644–5.

    Article  CAS  PubMed  Google Scholar 

  39. Uotila J, Dastidar P, Heinonen T, Ryymin P, Punnonen R, Laasonen E. Magnetic resonance imaging compared to ultrasonography in fetal weight and volume estimation in diabetic and normal pregnancy. Acta Obstet Gynecol Scand. 2000;79:255–9.

    CAS  PubMed  Google Scholar 

  40. Kubik-Huch RA, Wildermuth S, Cettuzzi L, Rake A, Seifert B, Chaoui R, et al. Fetus and uteroplacental unit: fast MR imaging with three-dimensional reconstruction and volumetry-feasibility study. Radiology. 2001;219:567–73.

    Article  CAS  PubMed  Google Scholar 

  41. Kacem Y, Cannie MM, Kadji C, Dobrescu O, Lo Zito L, Ziane S, et al. Fetal weight estimation: comparison of two-dimensional US and MR imaging assessments. Radiology. 2013;267:902–10.

    Article  PubMed  Google Scholar 

  42. Kadji C, De Groof M, Camus MF, De Angelis R, Fellas S, Klass M, et al. The use of a software-assisted method to estimate fetal weight at and near term using magnetic resonance imaging. Fetal Diagn Ther. 2017;41:307–13.

    Article  PubMed  Google Scholar 

  43. Kadji C, Camus MF, Bevilacqua E, Cannie MM, Sanchez TC, Jani JC. Repeatability of estimated fetal weight: comparison between MR imaging versus 2D ultrasound in at- and near-term patients. Eur J Radio. 2017;91:35–40.

    Article  Google Scholar 

  44. Kadji C, Cannie MM, De Angelis R, Camus M, Klass M, Fellas S, et al. Prenatal prediction of postnatal large-for-dates neonates using a simplified MRI method: comparison with conventional 2D ultrasound estimates. Ultrasound Obstet Gynecol. 2018;52:250–7.

    Article  CAS  PubMed  Google Scholar 

  45. Kadji C, Cannie MM, Van Wettere M, Bevilacqua E, Dutemeyer V, Strizek B, et al. A longitudinal study on fetal weight estimation at third trimester of pregnancy: comparison of magnetic resonance imaging and 2-D ultrasound predictions. Fetal Diagn Ther. 2017;42:181–8.

    Article  PubMed  Google Scholar 

  46. Kadji C, Bevilacqua E, Hurtado I, Carlin A, Cannie MM, Jani JC. Comparison of conventional 2D ultrasound to magnetic resonance imaging for prenatal estimation of birthweight in twin pregnancy. Am J Obstet Gynecol. 2018;218:128 e121–128 e111.

    Article  Google Scholar 

  47. Gilbert WM, Danielsen B. Pregnancy outcomes associated with intrauterine growth restriction. Am J Obstet Gynecol. 2003;188:1596–9.

    Article  PubMed  Google Scholar 

  48. Chauhan SP, Rice MM, Grobman WA, Bailit J, Reddy UM, Wapner RJ, et al. Neonatal morbidity of small- and large-for-gestational-age neonates born at term in uncomplicated pregnancies. Obstet Gynecol. 2017;130:511–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Doty MS, Chen HY, Sibai BM, Chauhan SP. Maternal and neonatal morbidity associated with early term delivery of large-for-gestational-age but nonmacrosomic neonates. Obstet Gynecol. 2019;133:1160–6.

    Article  PubMed  Google Scholar 

  50. Rustogi D, Synnes A, Alshaikh B, Hasan S, Drolet C, Masse E, et al. Neurodevelopmental outcomes of singleton large for gestational age infants <29 weeks’ gestation: a retrospective cohort study. J Perinatol. 2021;41:1313–21.

    Article  PubMed  Google Scholar 

  51. Christians JK, Grynspan D, Greenwood SL, Dilworth MR. The problem with using the birthweight: placental weight ratio as a measure of placental efficiency. Placenta. 2018;68:52–8.

    Article  PubMed  Google Scholar 

  52. Didier RA, Khrichenko D, Barrera CA, Maya C, Johnson AM, Oliver ER, et al. Novel computerized analytic technique for quantification of amniotic fluid volume in fetal MRI. AJR Am J Roentgenol. 2019;213:W149–W152.

    Article  PubMed  Google Scholar 

  53. Hilliard NJ, Hawkes R, Patterson AJ, Graves MJ, Priest AN, Hunter S, et al. Amniotic fluid volume: rapid MR-based assessment at 28-32 weeks gestation. Eur Radio. 2016;26:3752–9.

    Article  CAS  Google Scholar 

  54. Kehl S, Schelkle A, Thomas A, Puhl A, Meqdad K, Tuschy B, et al. Single deepest vertical pocket or amniotic fluid index as evaluation test for predicting adverse pregnancy outcome (SAFE trial): a multicenter, open-label, randomized controlled trial. Ultrasound Obstet Gynecol. 2016;47:674–9.

    Article  CAS  PubMed  Google Scholar 

  55. Magann EF, Sandlin AT, Ounpraseuth ST. Amniotic fluid and the clinical relevance of the sonographically estimated amniotic fluid volume: oligohydramnios. J Ultrasound Med. 2011;30:1573–85.

    Article  PubMed  Google Scholar 

  56. Dubil EA, Magann EF. Amniotic fluid as a vital sign for fetal wellbeing. Australas J Ultrasound Med. 2013;16:62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  57. DeFreitas MJ, Katsoufis CP, Infante JC, Granda ML, Abitbol CL, Fornoni A. The old becomes new: advances in imaging techniques to assess nephron mass in children. Pediatr Nephrol. 2021;36:517–25.

    Article  PubMed  Google Scholar 

  58. Sun L, Guo C, Yao L, Zhang T, Wang J, Wang L, et al. Quantitative diagnostic advantages of three-dimensional ultrasound volume imaging for fetal posterior fossa anomalies: preliminary establishment of a prediction model. Prenat Diagn. 2019;39:1086–95.

    Article  CAS  PubMed  Google Scholar 

  59. Guerriero S, Alcazar JL, Pascual MA, Ajossa S, Perniciano M, Piras A, et al. Deep infiltrating endometriosis: comparison between 2-dimensional ultrasonography (US), 3-dimensional US, and magnetic resonance imaging. J Ultrasound Med. 2018;37:1511–21.

    Article  PubMed  Google Scholar 

  60. Goncalves LF, Lee W, Mody S, Shetty A, Sangi-Haghpeykar H, Romero R. Diagnostic accuracy of ultrasonography and magnetic resonance imaging for the detection of fetal anomalies: a blinded case-control study. Ultrasound Obstet Gynecol. 2016;48:185–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge our funding sources: Supported by National Institutes of Health (1U54HD090257, R01-HL116585, K23HD092585-01A1).

Author information

Authors and Affiliations

Authors

Contributions

AA was responsible for the manual data collection and providing original draft and final review of the manuscript. KK and NRA were responsible for MRI data collection, critical review and editing of the manuscript along with final review. DK was responsible for the semi-automated process in MR image analysis, critical review and editing of the manuscript along with final review. RI was responsible for statistical analysis and creating figures, critical review and editing of the manuscript along with final review. AB and CL were responsible for study design and objectives, interpreting results, critical review and editing of the manuscript along with final review. JQ was responsible for screening, approaching and enrolling eligible subjects, critical review and editing of the manuscript along with final review. ACG and HKA were responsible for identifying and arbitrating potentially eligible subjects, interpreting results, critical review and editing of the manuscript along with final review. NNA was responsible for study design and objectives, oversight of data collection and analysis, interpreting results, critical review and editing of the manuscript along with final review.

Corresponding author

Correspondence to Catherine Limperopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amgalan, A., Kapse, K., Krishnamurthy, D. et al. Measuring intrauterine growth in healthy pregnancies using quantitative magnetic resonance imaging. J Perinatol 42, 860–865 (2022). https://doi.org/10.1038/s41372-022-01340-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-022-01340-6

This article is cited by

Search

Quick links