Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effect of enteral zinc supplementation on growth and neurodevelopment of preterm infants: a systematic review and meta-analysis

Abstract

Objective

To evaluate effect of enteral zinc supplementation on growth and neurodevelopmental outcomes of preterm infants.

Study design

A systematic review and meta-analysis of randomized-controlled trials (RCTs) examining growth and neurodevelopmental outcomes after zinc supplementation in preterm infants.

Results

Of eight RCTs involving 742 infants included, seven reported growth anthropometrics at 3–6 months corrected age (CA) and two reported neurodevelopmental outcomes at 6–12 months CA. Zinc supplementation was associated with increased weight z-score (weighted mean difference (WMD) = 0.50; 95% CI 0.23–0.76, heterogeneity I2 = 89.1%; P < 0.01), length z-score (WMD = 1.12; 95% CI 0.63–1.61, heterogeneity I2 = 96.0%; P < 0.01) and motor developmental score (WMD = 9.54; 95% CI 6.6–12.4 heterogeneity I2 = 0%; P = 0.52). There was no effect on head circumference and total developmental score. Evidence is “moderate” certainty for weight and length and “very low” certainty for neurodevelopment.

Conclusion

Zinc supplementation may enhance weight gain and linear growth in preterm infants. There is a lack of data about relationship between zinc supplementation and neurodevelopment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study flow diagram.
Fig. 2: Forest plots for changes in anthropometric z-scores.

Similar content being viewed by others

References

  1. Maret W. Zinc and the zinc proteome. Met ions life Sci. 2013;12:479–501.

    Article  PubMed  Google Scholar 

  2. Cousins RJ, Liuzzi JP, Lichten LA. Mammalian zinc transport, trafficking, and signals. J Biol Chem. 2006;281:24085–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wastney ME, Angelus P, Barnes RM, Subramanian KN. Zinc kinetics in preterm infants: a compartmental model based on stable isotope data. Am J Physiol. 1996;271:R1452–9.

    CAS  PubMed  Google Scholar 

  4. King JC. Determinants of maternal zinc status during pregnancy. Am J Clin Nutr. 2000;71:1334S–43S.

    Article  CAS  PubMed  Google Scholar 

  5. Griffin IJ, Domellof M, Bhatia J, Anderson DM, Kler N. Zinc and copper requirements in preterm infants: an examination of the current literature. Early Hum Dev. 2013;89:S29–34.

    Article  CAS  PubMed  Google Scholar 

  6. Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, et al. Zinc in early life: a key element in the fetus and preterm neonate. Nutrients. 2015;7:10427–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Terrin G, Boscarino G, Di Chiara M, Iacobelli S, Faccioli F, Greco C, et al. Nutritional intake influences zinc levels in preterm newborns: an observational study. Nutrients. 2020;12:529–38.

  8. Friel JK, Andrews WL, Simmons BS, Miller LV, Longerich HP. Zinc absorption in premature infants: comparison of two isotopic methods. Am J Clin Nutr. 1996;63:342–7.

    Article  CAS  PubMed  Google Scholar 

  9. Wastney ME, Angelus PA, Barnes RM, Subramanian KN. Zinc absorption, distribution, excretion, and retention by healthy preterm infants. Pediatr Res. 1999;45:191–6.

    Article  CAS  PubMed  Google Scholar 

  10. Itabashi K, Saito T, Ogawa Y, Uetani Y. Incidence and predicting factors of hypozincemia in very-low-birth-weight infants at near-term postmenstrual age. Biol Neonate. 2003;83:235–40.

    Article  CAS  PubMed  Google Scholar 

  11. Obladen M, Loui A, Kampmann W, Renz H. Zinc deficiency in rapidly growing preterm infants. Acta Paediatr. 1998;87:685–91.

    Article  CAS  PubMed  Google Scholar 

  12. Vazquez-Gomis R, Bosch-Gimenez V, Juste-Ruiz M, Vazquez-Gomis C, Izquierdo-Fos I, Pastor-Rosado J. Zinc concentration in preterm newborns at term age, a prospective observational study. BMJ Paediatrics Open 2019;3:e000527.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barbarot S, Chantier E, Kuster A, Hello M, Roze JC, Blouin E, et al. Symptomatic acquired zinc deficiency in at-risk premature infants: high dose preventive supplementation is necessary. Pediatr Dermatol. 2010;27:380–3.

    Article  PubMed  Google Scholar 

  14. Sandstead HH. Subclinical zinc deficiency impairs human brain function. J Trace Elem Med Biol. 2012;26:70–3.

  15. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brion LP, Heyne R, Lair CS. Role of zinc in neonatal growth and brain growth: review and scoping review. Pediatr Res. 2020:s41390-020.

  17. Tee PS. Does enteral zinc supplementation improve growth and clinical outcome in preterm babies <37 weeks? J Paediatrics Child Health. 2020;56:1971–7.

    Article  Google Scholar 

  18. Higgins JP, Thomas J, Chandler J, Cumposton M, Li T, Page MJ, et al. Cochrane handbook for systematic reviews of interventions.: cochrane. John Wiley & Sons; Chichester (UK); 2019.

  19. World Health Orgnization. https://www.who.int/tools/child-growth-standards/standards.

  20. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Article  PubMed  PubMed Central  Google Scholar 

  21. World Health Organization. WHO Child Growth Standards: Head Circumference-for-age, Arm Circumference-for-age, Triceps Skinfold-for-age and Subscapular Skinfold-for-age: Methods and Development 2007.

  22. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schünemann H, Brożek J, Guyatt G, Oxman A, editors. GRADE handbook for grading quality of evidence and strength of recommendations. John Wiley & Sons; Chichester (UK); 2013.

  24. McMaster University, Evidence Prime, Inc. GRADEpro GDT: GRADEpro Guideline Development Tool. https://gradepro.org; 2020.

  25. Terrin G, Berni Canani R, Passariello A, Messina F, Conti MG, Caoci S, et al. Zinc supplementation reduces morbidity and mortality in very-low-birth-weight preterm neonates: a hospital-based randomized, placebo-controlled trial in an industrialized country. Am J Clin Nutr. 2013;98:1468–74.

    Article  CAS  PubMed  Google Scholar 

  26. Mathur NB, Agarwal DK. Zinc supplementation in preterm neonates and neurological development, a randomized controlled trial. Indian Pediatr. 2015;52:951–5.

    Article  CAS  PubMed  Google Scholar 

  27. El-Farghali O, El-Wahed MA, Hassan NE, Imam S, Alian K. Early zinc supplementation and enhanced growth of the low-birth weight neonate. Open Access Maced J Med Sci 2015;3:63–8.

    Article  PubMed  Google Scholar 

  28. Hoque A, Ali S. Role of zinc in low birth weight neonates. Bangladesh Med J. 2009;38:24–30.

  29. Friel JK, Andrews WL, Matthew JD, Long DR, Cornel AM, Cox M, et al. Zinc supplementation in very-low-birth-weight infants. J Pediatr Gastroenterol Nutr. 1993;17:97–104.

    Article  CAS  PubMed  Google Scholar 

  30. Ram Kumar TV, Ramji S. Effect of zinc supplementation on growth in very low birth weight infants. J Trop Pediatr. 2012;58:50–4.

    Article  CAS  PubMed  Google Scholar 

  31. Aminisani N, Barak M, Shamshirgaran SM. Effect of zinc supplementation on growth of low birth weight infants aged 1-6 mo in Ardabil, Iran. Indian J Pediatr. 2011;78:1239–43.

    Article  PubMed  Google Scholar 

  32. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ram Kumar TV, Ramji S. Effect of zinc supplementation on growth in very low birth weight infants. J Trop Pediatr. 2012;58:50–4.

    Article  CAS  PubMed  Google Scholar 

  34. Diaz-Gomez NM, Domenech E, Barroso F, Castells S, Cortabarria C, Jimenez A. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics. 2003;111:1002–9.

    Article  PubMed  Google Scholar 

  35. American Acadmey of Pediatrics Committee on Nutrition. Nutritional needs of the preterm infants. In: Kleinman R, Greer F, editors. Pediatric Nutrition Handbook. 8TH ed. Elk Grove Village, IL; American Academy of Pediatrics; 2020.

  36. Amiel-Tison C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol. 2002;27:196–212.

    Article  PubMed  Google Scholar 

  37. Islam MN, Chowdhury MA, Siddika M, Qurishi SB, Bhuiyan MK, Hoque MM, et al. Effect of oral zinc supplementation on the growth of preterm infants. Indian Pediatr. 2010;47:845–9.

    Article  CAS  PubMed  Google Scholar 

  38. Ragab SM. The effects of zinc supplementation on growth and development in preterm neonates Menoufia Med J. 2014;27:524–8.

  39. Gollenberg AL, Lynch CD, Jackson LW, McGuinness BM, Msall ME. Concurrent validity of the parent-completed Ages and Stages Questionnaires, 2nd Ed. with the Bayley Scales of Infant Development II in a low-risk sample. Child Care Health Dev. 2010;36:485–90.

    Article  CAS  PubMed  Google Scholar 

  40. Imdad A, Bhutta ZA. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries: a meta-analysis of studies for input to the lives saved tool. BMC Public Health. 2011;11:S22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mayo-Wilson E, Junior JA, Imdad A, Dean S, Chan XH, Chan ES, et al. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years of age. Cochrane Database Syst Rev. 2014:CD009384.

  42. Flynn RS, Huber MD, DeMauro SB. Predictive value of the BSID-II and the Bayley-III for early school age cognitive function in very preterm infants. Glob Pediatr Health. 2020;7:2333794X20973146.

    PubMed  PubMed Central  Google Scholar 

  43. Hack M, Taylor HG, Drotar D, Schluchter M, Cartar L, Wilson-Costello D, et al. Poor predictive validity of the Bayley Scales of Infant Development for cognitive function of extremely low birth weight children at school age. Pediatrics. 2005;116:333–41.

    Article  PubMed  Google Scholar 

  44. Roberts G, Anderson PJ, Doyle LW, Victorian Infant Collaborative Study G. The stability of the diagnosis of developmental disability between ages 2 and 8 in a geographic cohort of very preterm children born in 1997. Arch Dis Child. 2010;95:786–90.

  45. Gogia S, Sachdev HS. Zinc supplementation for mental and motor development in children. Cochrane Database Syst Rev. 2012;12:CD007991.

    PubMed  Google Scholar 

  46. Andescavage NN, du Plessis A, McCarter R, Serag A, Evangelou I, Vezina G, et al. Complex trajectories of brain development in the healthy human fetus. Cereb Cortex. 2017;27:5274–83.

    PubMed  Google Scholar 

  47. Agostoni C, Buonocore G, Carnielli VP, De Curtis M, Darmaun D, Decsi T, et al. Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2010;50:85–91.

    Article  CAS  PubMed  Google Scholar 

  48. Donangelo CM, King JC. Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation. Nutrients. 2012;4:782–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Higashi A, Ikeda T, Iribe K, Matsuda I. Zinc balance in premature infants given the minimal dietary zinc requirement. J Pediatrics. 1988;112:262–6.

    Article  CAS  Google Scholar 

  50. Altigani M, Murphy JF, Gray OP. Plasma zinc concentration and catch up growth in preterm infants. Acta Paediatrica Scandinavica Suppl. 1989;357:20–33.

    Article  CAS  Google Scholar 

  51. Abrams SA. Zinc for preterm infants: who needs it and how much is needed? Am J Clin Nutr. 2013;98:1373–4.

    Article  CAS  PubMed  Google Scholar 

  52. Saper RB, Rash R. Zinc: an essential micronutrient. Am Fam Phys. 2009;79:768–72.

    Google Scholar 

  53. Olivares M, Pizarro F, Ruz M. Zinc inhibits nonheme iron bioavailability in humans. Biol Trace Elem Res. 2007;117:7–14.

  54. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiological Rev. 1993;73:79–118.

    Article  CAS  Google Scholar 

  55. Berni Canani R, Secondo A, Passariello A, Buccigrossi V, Canzoniero LM, Ruotolo S, et al. Zinc inhibits calcium-mediated and nitric oxide-mediated ion secretion in human enterocytes. Eur J Pharmacol. 2010;626:266–70.

    Article  CAS  PubMed  Google Scholar 

  56. de Queiroz CA, Fonseca SG, Frota PB, Figueiredo IL, Aragao KS, Magalhaes CE, et al. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats. BMC Gastroenterol. 2014;14:136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belal Alshaikh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshaikh, B., Abo Zeed, M., Yusuf, K. et al. Effect of enteral zinc supplementation on growth and neurodevelopment of preterm infants: a systematic review and meta-analysis. J Perinatol 42, 430–439 (2022). https://doi.org/10.1038/s41372-021-01094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01094-7

This article is cited by

Search

Quick links