Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Are small-for-gestational-age preterm infants at increased risk of overweight? Statistical pitfalls in overadjusting for body size measures

Abstract

Objective

The objective of this study is to analyze the effect of adjusting for body measures on the association between small for gestational age (SGA) and overweight at 3 years.

Study design

Data were obtained from the Preterm Infant Multicenter Growth Study (n = 1089). Logistic regression was used, to adjust for confounders with additional adjustments separately for weight and height at 21 months. Marginal structural models (MSMs) estimated the direct effect of SGA on overweight.

Results

The crude and adjusted for confounders models yielded null associations between SGA and overweight. Adjusting for height yielded a positive association (odds ratio (OR): 2.31, 95% CI: 0.52–10.26) and adjusting for weight provided a significantly positive association (OR: 6.60, 95% CI: 1.10–37.14). The MSMs, with height and weight held constant, provided no evidence for a direct effect of SGA on overweight (OR: 0.83, 95% CI: 0.14–5.01, OR: 0.71, 95% CI: 0.18–2.81, respectively).

Conclusion

Adjusting for body measures can change the association between SGA and overweight, providing spurious estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261:412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

    Article  CAS  PubMed  Google Scholar 

  2. Koletzko B, Brands B, Grote V, Kirchberg FF, Prell C, Rzehak P, et al. Long-term health impact of early nutrition: the power of programming. Ann Nutr Metab. 2017;70:161–9. https://doi.org/10.1159/000477781.

    Article  CAS  PubMed  Google Scholar 

  3. Crume TL, Scherzinger A, Stamm E, McDuffie R, Bischoff KJ, Hamman RF, et al. The long-term impact of intrauterine growth restriction in a diverse U.S. cohort of children: the EPOCH study. Obesity. 2014;22:608–15. https://doi.org/10.1002/oby.20565.

    Article  CAS  PubMed  Google Scholar 

  4. Barros FC, Victora CG. Increased blood pressure in adolescents who were small for gestational age at birth: a cohort study in Brazil. Int J Epidemiol. 1999;28:676–81. https://doi.org/10.1093/ije/28.4.676.

    Article  CAS  PubMed  Google Scholar 

  5. Kramer MS, Zhang X, Dahhou M, Yang S, Martin RM, Oken E, et al. Does fetal growth restriction cause later obesity? Pitfalls in analyzing causal mediators as confounders. Am J Epidemiol. 2017;185:585–90. https://doi.org/10.1093/aje/kww109.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paneth N, Ahmed F, Stein AD. Early nutritional origins of hypertension: a hypothesis still lacking support. J Hypertens Suppl. 1996;14:S121–9.

    CAS  PubMed  Google Scholar 

  7. Tu Y-K, West R, Ellison GTH, Gilthorpe MS. Why evidence for the fetal origins of adult disease might be a statistical artifact: the “Reversal Paradox” fOr the Relation between Birth Weight and Blood Pressure in Later Life. Am J Epidemiol. 2005;161:27–32. https://doi.org/10.1093/aje/kwi002.

    Article  PubMed  Google Scholar 

  8. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet. 2002;360:659–65. https://doi.org/10.1016/S0140-6736(02)09834-3.

    Article  PubMed  Google Scholar 

  9. Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. BMJ. 1999;319:245–9. https://doi.org/10.1136/bmj.319.7204.245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kramer MS. Invited commentary: association between restricted fetal growth and adult chronic disease: is it causal? Is it important? Am J Epidemiol. 2000;152:605–8. https://doi.org/10.1093/aje/152.7.605.

    Article  CAS  PubMed  Google Scholar 

  11. Doyle LW, Faber B, Callanan C, Morley R. Blood pressure in late adolescence and very low birth weight. Pediatrics. 2003;111:252–7. https://doi.org/10.1542/peds.111.2.252.

    Article  PubMed  Google Scholar 

  12. Euser AM, Finken MJJ, Keijzer-Veen MG, Hille ETM, Wit JM, Dekker FW, et al. Associations between prenatal and infancy weight gain and BMI, fat mass, and fat distribution in young adulthood: a prospective cohort study in males and females born very preterm. Am J Clin Nutr. 2005;81:480–7. https://doi.org/10.1093/ajcn.81.2.480.

    Article  CAS  PubMed  Google Scholar 

  13. Vasylyeva TL, Chennasamudram SP, Okogbo ME. Can we predict hypertension among preterm children? Clin Pediatr. 2011;50:936–42. https://doi.org/10.1177/0009922811409918.

    Article  Google Scholar 

  14. Juonala M, Cheung MMH, Sabin MA, Burgner D, Skilton MR, Hutri-Kahonen N, et al. Effect of birth weight on life-course blood pressure levels among children born premature. J Hypertens. 2015;33:1542–8. https://doi.org/10.1097/HJH.0000000000000612.

    Article  CAS  PubMed  Google Scholar 

  15. Schisterman EF, Cole SR, Platt RW. Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology. 2009;20:488–95. https://doi.org/10.1097/EDE.0b013e3181a819a1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rothman K, Greenland SLT. Validity in epidemiologic studies. In: Rothman K, Greenland S, Lash T, editors. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams and Wilkins; 2008.

  17. Hernán MA, Robins JM. Casual Inference. 2019. https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book. Accessed 22 Nov 2019.

  18. Ananth CV, Schisterman EF. Confounding, causality, and confusion: the role of intermediate variables in interpreting observational studies in obstetrics. Am J Obstet Gynecol. 2017;217:167–75. https://doi.org/10.1016/j.ajog.2017.04.016.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kramer MS, Chalmers B, Hodnett ED, Sevkovskaya Z, Dzikovich I, Shapiro S, et al. Promotion of breastfeeding intervention trial (PROBIT): a randomized trial in the Republic of Belarus. JAMA. 2001;285:413–20. https://doi.org/10.1001/jama.285.4.413.

    Article  CAS  PubMed  Google Scholar 

  20. World Health Organization. Preterm birth: key facts. 2018. https://www.who.int/news-room/fact-sheets/detail/preterm-birth. Accessed 27 Nov 2019.

  21. Public Health Agency of Canada. Perinatal Health Indicators for Canada. 2017. https://www.canada.ca/en/public-health/services/injury-prevention/health-surveillance-epidemiology-division/maternal-infant-health/perinatal-health-indicators-2017.html. Accessed 26 Nov 2019.

  22. Giuliani F, Ismail LC, Bertino E, Bhutta ZA, Ohuma EO, Rovelli I, et al. Monitoring postnatal growth of preterm infants: present and future. Am J Clin Nutr. 2016;103:635S–47S. https://doi.org/10.3945/ajcn.114.106310.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arianas EA, Rankin KM, Norr KF, White-Traut RC. Maternal weight status and responsiveness to preterm infant behavioral cues during feeding. BMC Pregnancy Childbirth. 2017;17:113. https://doi.org/10.1186/s12884-017-1298-4.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hack M, Schluchter M, Andreias L, Seunghee M, Taylor HG, Drotar D, et al. Change in prevalence of chronic conditions between childhood and adolescence among extremely low-birth-weight children. JAMA. 2011;306:394–401. https://doi.org/10.1001/jama.2011.1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hack M, Schluchter M, Cartar L, Rahman M. Blood pressure among very low birth weight (<1.5 kg) young adults. Pediatr Res. 2005;58:677–84. https://doi.org/10.1203/01.PDR.0000180551.93470.56.

    Article  PubMed  Google Scholar 

  26. Rotteveel J, van Weissenbruch MM, Twisk JWR, Delemarre-Van de Waal HA. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008;122:313–21. https://doi.org/10.1542/peds.2007-2012.

    Article  PubMed  Google Scholar 

  27. Fenton TR, Nasser R, Eliasziw M, Kim JH, Bilan D, Sauve R. Validating the weight gain of preterm infants between the reference growth curve of the fetus and the term infant. BMC Pediatr. 2013;13:92. https://doi.org/10.1186/1471-2431-13-92.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59 https://doi.org/10.1186/1471-2431-13-59.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeve D, Regelmann MO, Holzman IR, Rapaport R. Small at birth, but how small? The definition of SGA revisited. Horm Res Paediatr. 2016;86:357–60. https://doi.org/10.1159/000449275.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Z, Sauve RS. Assessment of postneonatal growth in VLBW infants: selection of growth references and age adjustment for prematurity. Can J Public Heal. 1998;89:109–14. https://doi.org/10.1007/BF03404400.

    Article  CAS  Google Scholar 

  31. World Health Organization. WHO Child Growth Standards, length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age, methods and development. 2006. https://www.who.int/childgrowth/standards/technical_report/en/. Accessed 14 Nov 2019.

  32. Bandoli G, Palmsten K, Flores KF, Chambers CD. Constructing causal diagrams for common perinatal outcomes: benefits, limitations and motivating examples with maternal antidepressant use in pregnancy. Paediatr Perinat Epidemiol. 2016;30:521–8. https://doi.org/10.1111/ppe.12302.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Williams TC, Bach CC, Matthiesen NB, Henriksen TB, Gagliardi L. Directed acyclic graphs: a tool for causal studies in paediatrics. Pediatr Res. 2018;84:487–93. https://doi.org/10.1038/s41390-018-0071-3.

    Article  PubMed  PubMed Central  Google Scholar 

  34. World Health Organization. Social determinants of health. 2018. https://www.who.int/social_determinants/sdh_definition/en/. Accessed 27 Mar 2020.

  35. Magriplis E, Farajian P, Panagiotakos DB, Risvas G, Zampelas A. Maternal smoking and risk of obesity in school children: investigating early life theory from the GRECO study. Prev Med Rep. 2017;8:177–82. https://doi.org/10.1016/j.pmedr.2017.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Quelhas D, Kompala C, Wittenbrink B, Zhen Han, Parker M, Shapiro M, et al. The association between active tobacco use during pregnancy and growth outcomes of children under five years of age: a systematic review and meta-analysis. BMC Public Health. 2018;18:1372. https://doi.org/10.1186/s12889-018-6137-7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ruiz M, Goldblatt P, Morrison J, Kukla L, Svancara J, Riitta-Jarvelin M, et al. Mother’s education and the risk of preterm and small for gestational age birth: a DRIVERS meta-analysis of 12 European cohorts. J Epidemiol Community Health. 2015;69:826–33. https://doi.org/10.1136/jech-2014-205387.

    Article  PubMed  Google Scholar 

  38. Meng Y, Groth SW. Fathers count: the impact of paternal risk factors on birth outcomes. Matern Child Health J. 2018;22:401–8. https://doi.org/10.1007/s10995-017-2407-8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muthuri SK, Onywera VO, Tremblay MS, Brolyles ST, Chaput JP, Fogelholm M, et al. Relationships between parental education and overweight with childhood overweight and physical activity in 9–11 year old children: results from a 12-country study. PLoS ONE. 2016;11:e0147746. https://doi.org/10.1371/journal.pone.0147746.

  40. Cole SR, Hernán MA. Constructing inverse probability weights for marginal structural models. Am J Epidemiol. 2008;168:656–64. https://doi.org/10.1093/aje/kwn164.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60. https://doi.org/10.1097/00001648-200009000-00011.

    Article  CAS  PubMed  Google Scholar 

  42. VanderWeele TJ. Marginal structural models for the estimation of direct and indirect effects. Epidemiology. 2009;20:18–26. https://doi.org/10.1097/EDE.0b013e31818f69ce.

    Article  PubMed  Google Scholar 

  43. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18:815–31. https://doi.org/10.1097/00004872-200018070-00002.

    Article  CAS  PubMed  Google Scholar 

  44. Forsum E, Eriksson B, Flinke E, Henriksson H, Henriksson P, Löf M. Fat and fat‐free mass of healthy Swedish children show tracking during early life, but there are differences. Acta Paediatr. 2019;108:1704–8. https://doi.org/10.1111/apa.14771.

    Article  CAS  PubMed  Google Scholar 

  45. Giannì ML, Roggero P, Piemontese P, Morlacchi L, Bracco B, Taroni F, et al. Boys who are born preterm show a relative lack of fat-free mass at 5 years of age compared to their peers. Acta Paediatr. 2015;104:e119–23. https://doi.org/10.1111/apa.12856.

    Article  PubMed  Google Scholar 

  46. Huke V, Rudloff S, Brugger M, Strauch K, Berthold LD, Landmann E. Prematurity is not associated with intra-abdominal adiposity in 5- to 7-year-old children. J Pediatr. 2013;163:1301–6. https://doi.org/10.1016/j.jpeds.2013.06.035.

    Article  PubMed  Google Scholar 

  47. Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J, Boyle M. Growth trajectories of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. Pediatr Res. 2006;60:751–8. https://doi.org/10.1203/01.pdr.0000246201.93662.8e.

    Article  PubMed  Google Scholar 

  48. Fewtrell MS, Lucas A, Cole TJ, Wells JCK. Prematurity and reduced body fatness at 8-12 y of age. Am J Clin Nutr. 2004;80:436–40. https://doi.org/10.1093/ajcn/80.2.436.

    Article  CAS  PubMed  Google Scholar 

  49. Alves PJS, Araujo E,Jr, Henriques ACPT, Carvalho FHC. Preterm at birth is not associated with greater cardiovascular risk in adolescence. J Matern Fetal Neonatal Med. 2016;29:3351–7. https://doi.org/10.3109/14767058.2015.1126577.

    Article  CAS  PubMed  Google Scholar 

  50. Zanini RV, Santos IS, Gigante DP, Matijasevich A, Barros FC, Barros AJD. Body composition assessment using DXA in six-year-old children: the 2004 Pelotas Birth Cohort, Rio Grande do Sul State, Brazil. Cad Saude Publica. 2014;30:2123–33. https://doi.org/10.1590/0102-311x00153313.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seham Elmrayed.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Ethics approval was granted by the University of Calgary Conjoint and the former Regina Qu’Appelle Health Region Health Research Ethics Boards. This study was performed in accordance with the Declaration of Helsinki.

Informed consent

The parents had signed informed consent for their child’s data to be used in research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmrayed, S., Metcalfe, A., Brenner, D. et al. Are small-for-gestational-age preterm infants at increased risk of overweight? Statistical pitfalls in overadjusting for body size measures. J Perinatol 41, 1845–1851 (2021). https://doi.org/10.1038/s41372-021-01050-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01050-5

This article is cited by

Search

Quick links