Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breastfeeding and growth trajectory from birth to 5 years among children exposed and unexposed to gestational diabetes mellitus in utero

Abstract

Objectives

This study aims to evaluate the association between exposure to gestational diabetes mellitus and growth trajectory from birth to 5 years and to test whether breastfeeding influences this association among children exposed and unexposed to gestational diabetes.

Study design

Weight at 0, 6, 12, and 18 months and 2, 3, 4, and 5 years were retrospectively collected for 103 children exposed and 63 children unexposed to gestational diabetes. Weight-for-age z-score was calculated. Mixed linear model for repeated measurements were computed to test whether breastfeeding was associated differently with weight-for-age z-score of children exposed or unexposed to diabetes.

Results

Children exposed to gestational diabetes had greater z-score values at 6 months and 4 and 5 years (p < 0.10). Breastfeeding duration was not associated with weight-for-age z-score trajectory in any children.

Conclusion

Children exposed to gestational diabetes had a different growth trajectory in early life, but breastfeeding duration did not seem to influence this association.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Weight-for-age z-score trajectory according to in utero exposure to GDM.

Similar content being viewed by others

References

  1. World Health Organization (WHO). Taking action on obesity report. Geneva: World Health Organization (WHO); 2018. WHO/NMH/PND/ECHO/18.1.

  2. World Health Organization (WHO). Population-based approaches to childhood obesity prevention. Geneva: World Health Organization (WHO); 2012. ISBN 9789241504782.

  3. Agosti M, Tandoi F, Morlacchi L, Bossi A. Nutritional and metabolic programming during the first thousand days of life. Pediatr Med Chir. 2017;39:157.

    Article  PubMed  Google Scholar 

  4. El-Heis S, Godfrey K. Developmental origins of health and disease. Obstet Gynaecol Reprod Med. 2015;25:236–8.

    Article  Google Scholar 

  5. Coustan DR. Gestational diabetes mellitus. Clin Chem. 2013;59:1310–21.

    Article  CAS  PubMed  Google Scholar 

  6. Nehring I, Chmitorz A, Reulen H, von Kries R, Ensenauer R. Gestational diabetes predicts the risk of childhood overweight and abdominal circumference independent of maternal obesity. Diabet Med. 2013;30:1449–56.

    Article  CAS  PubMed  Google Scholar 

  7. Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care. 2002;25:1862–8.

    Article  PubMed  Google Scholar 

  8. Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002.

    Article  PubMed  Google Scholar 

  9. Hu Z, Tylavsky FA, Han JC, Kocak M, Fowke JH, Davis RL, et al. Maternal metabolic factors during pregnancy predict early childhood growth trajectories and obesity risk: the CANDLE Study. Int J Obes. 2019;43:1914–22.

    Article  Google Scholar 

  10. Crume TL, Ogden L, West NA, Vehik KS, Scherzinger A, Daniels S, et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) study. Diabetologia. 2011;54:87–92.

    Article  CAS  PubMed  Google Scholar 

  11. Wells JC. Adaptive variability in the duration of critical windows of plasticity: implications for the programming of obesity. Evol Med Public Health. 2014;2014:109–21.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rzehak P, Oddy WH, Mearin ML, Grote V, Mori TA, Szajewska H, et al. Infant feeding and growth trajectory patterns in childhood and body composition in young adulthood. Am J Clin Nutr. 2017;106:568–80.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson L, van Jaarsveld CH, Llewellyn CH, Cole TJ, Wardle J. Associations between infant feeding and the size, tempo and velocity of infant weight gain: SITAR analysis of the Gemini twin birth cohort. Int J Obes. 2014;38:980–7.

    Article  CAS  Google Scholar 

  14. Oddy WH, Mori TA, Huang RC, Marsh JA, Pennell CE, Chivers PT, et al. Early infant feeding and adiposity risk: from infancy to adulthood. Ann Nutr Metab. 2014;64:262–70.

    Article  CAS  PubMed  Google Scholar 

  15. Baird J, Fisher D, Lucas P, Kleijnen J, Roberts H, Law C. Being big or growing fast: systematic review of size and growth in infancy and later obesity. BMJ. 2005;331:929.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gunderson EP, Greenspan LC, Faith MS, Hurston SR, Quesenberry CP Jr. Breastfeeding and growth during infancy among offspring of mothers with gestational diabetes mellitus: a prospective cohort study. Pediatr Obes. 2018;13:492–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crume TL, Ogden L, Maligie M, Sheffield S, Bischoff KJ, McDuffie R, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care. 2011;34:641–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aris IM, Soh SE, Tint MT, Saw SM, Rajadurai VS, Godfrey KM, et al. Associations of infant milk feed type on early postnatal growth of offspring exposed and unexposed to gestational diabetes in utero. Eur J Nutr. 2015;56:55–64.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dugas C, Perron J, Marc I, Weisnagel SJ, Robitaille J. Association between early introduction of fruit juice during infancy and childhood consumption of sweet-tasting foods and beverages among children exposed and unexposed to gestational diabetes mellitus in utero. Appetite. 2019;132:190–5.

    Article  PubMed  Google Scholar 

  20. Comité d’experts des lignes directrices de pratique clinique de l’Association canadienne du diabète. Lignes directrices de pratique clinique 2003 de l’Association canadienne du diabète pour la prévention et le traitement du diabète au Canada. Can J Diabetes. 2003;27:S1–162.

    Google Scholar 

  21. World Health Organization. WHO anthro survey analyser and other tools. Geneva: World Health Organization; 2019. https://www.who.int/nutgrowthdb/software/en/.

  22. Ong KK, Ahmed ML, Emmett PM, Preece MA, Dunger DB. Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 2000;320:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng M, Lamb KE, Grimes C, Laws R, Bolton K, Ong KK, et al. Rapid weight gain during infancy and subsequent adiposity: a systematic review and meta-analysis of evidence. Obes Rev. 2018;19:321–32.

    Article  CAS  PubMed  Google Scholar 

  24. Oken E, Kleinman KP, Rich-Edwards J, Gillman MW. A nearly continuous measure of birth weight for gestational age using a United States national reference. BMC Pediatr. 2003;3:6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. World Health Organization. Report of the expert consultation on the optimal duration of exclusive breastfeeding. Gevena: WHO Press; 2001. p. 10. https://www.who.int/nutrition/publications/infantfeeding/WHO_NHD_01.09/en/.

  26. Hui LL, Li AM, Nelson EAS, Leung GM, Lee SL, Schooling CM. In utero exposure to gestational diabetes and adiposity: does breastfeeding make a difference? Int J Obes. 2018;42:1317–25.

    Article  CAS  Google Scholar 

  27. Kearney M, Perron J, Marc I, Weisnagel SJ, Tchernof A, Robitaille J. Association of prenatal exposure to gestational diabetes with offspring body composition and regional body fat distribution. Clin Obes. 2018;8:81–7.

    Article  CAS  PubMed  Google Scholar 

  28. Morisset AS, Cote JA, Michaud A, Robitaille J, Tchernof A, Dube MC, et al. Dietary intakes in the nutritional management of gestational diabetes mellitus. Can J Diet Pr Res. 2014;75:64–71.

    Article  Google Scholar 

  29. Landon MB, Rice MM, Varner MW, Casey BM, Reddy UM, Wapner RJ, et al. Mild gestational diabetes mellitus and long-term child health. Diabetes Care. 2015;38:445–52.

    Article  PubMed  Google Scholar 

  30. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189:1698–704.

    Article  PubMed  Google Scholar 

  31. Ge ZJ, Zhang CL, Schatten H, Sun QY. Maternal diabetes mellitus and the origin of non-communicable diseases in offspring: the role of epigenetics. Biol Reprod. 2014;90:139.

    Article  PubMed  Google Scholar 

  32. Kim SY, England JL, Sharma JA, Njoroge T. Gestational diabetes mellitus and risk of childhood overweight and obesity in offspring: a systematic review. Exp Diabetes Res. 2011;2011:541308.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anzman SL, Rollins BY, Birch LL. Parental influence on children’s early eating environments and obesity risk: implications for prevention. Int J Obes. 2010;34:1116–24.

    Article  CAS  Google Scholar 

  35. Giannakou K, Evangelou E, Yiallouros P, Christophi CA, Middleton N, Papatheodorou E, et al. Risk factors for gestational diabetes: an umbrella review of meta-analyses of observational studies. PLoS ONE. 2019;14:e0215372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Touger L, Looker HC, Krakoff J, Lindsay RS, Cook V, Knowler WC. Early growth in offspring of diabetic mothers. Diabetes Care. 2005;28:585–9.

    Article  PubMed  Google Scholar 

  37. Silverman BL, Rizzo TA, Cho NH, Metzger BE. Long-term effects of the intrauterine environment. the Northwestern University Diabetes in Pregnancy Center. Diabetes Care. 1998;21:B142–9.

    PubMed  Google Scholar 

  38. Stenhouse E, Wright DE, Hattersley AT, Millward BA. Maternal glucose levels influence birthweight and ‘catch-up’ and ‘catch-down’ growth in a large contemporary cohort. Diab Med. 2006;23:1207–12.

    Article  CAS  Google Scholar 

  39. Dugas C, Kearney M, Mercier R, Perron J, Tchernof A, Marc I, et al. Early life nutrition, glycemic and anthropometric profiles of children exposed to gestational diabetes mellitus in utero. Early Hum Dev. 2018;118:37–41.

    Article  PubMed  Google Scholar 

  40. Crume TL, Ogden LG, Mayer-Davis EJ, Hamman RF, Norris JM, Bischoff KJ, et al. The impact of neonatal breast-feeding on growth trajectories of youth exposed and unexposed to diabetes in utero: the EPOCH Study. Int J Obes. 2012;36:529–34.

    Article  CAS  Google Scholar 

  41. Plagemann A, Harder T, Franke K, Kohlhoff R. Long-term impact of neonatal breast-feeding on body weight and glucose tolerance in children of diabetic mothers. Diabetes Care. 2002;25:16–22.

    Article  PubMed  Google Scholar 

  42. Aydin S, Geckil H, Karatas F, Donder E, Kumru S, Kavak EC, et al. Milk and blood ghrelin level in diabetics. Nutr J. 2007;23:807–11.

    Article  CAS  Google Scholar 

  43. Aydin S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides. 2010;31:2236–40.

    Article  CAS  PubMed  Google Scholar 

  44. Morceli G, Franca EL, Magalhaes VB, Damasceno DC, Calderon IM, Honorio-Franca AC. Diabetes induced immunological and biochemical changes in human colostrum. Acta Paediatr. 2011;100:550–6.

    Article  CAS  PubMed  Google Scholar 

  45. Whitmore TJ, Trengove NJ, Graham DF, Hartmann PE. Analysis of insulin in human breast milk in mothers with type 1 and type 2 diabetes mellitus. Int J Endocrinol. 2012;2012:296368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shapira D, Mandel D, Mimouni FB, Moran-Lev H, Marom R, Mangel L, et al. The effect of gestational diabetes mellitus on human milk macronutrients content. J Perinatol. 2019;39:820–3.

    Article  PubMed  Google Scholar 

  47. Dugas C, Perron J, Kearney M, Mercier R, Tchernof A, Marc I, et al. Postnatal prevention of childhood obesity in offspring prenatally exposed to gestational diabetes mellitus: where are we now. Obes Facts. 2017;10:396–406.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Feig DS, Zinman B, Wang X, Hux JE. Risk of development of diabetes mellitus after diagnosis of gestational diabetes. CMAJ. 2008;179:229–34.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kark JD, Troya G, Friedlander Y, Slater PE, Stein Y. Validity of maternal reporting of breast feeding history and the association with blood lipids in 17 year olds in Jerusalem. J Epidemiol Community Health. 1984;38:218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buffarini R, Barros AJD, Matijasevich A, Loret de Mola C, Santos IS. Gestational diabetes mellitus, pre-gestational BMI and offspring BMI z-score during infancy and childhood: 2004 Pelotas Birth Cohort. BMJ. 2019;9:e024734.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Didier Brassard, M.Sc., RD (NUTRISS, INAF, Université Laval), David Simonyan (Clinical and Evaluative Research Platform, CHU de Québec, Université Laval), and Pierre Gagnon (NUTRISS, INAF, Université Laval) for their assistance with statistical analyses.

Funding

This research was funded by Diabetes Canada (Grant number: OG-3-14-4543-JR, 2014-2017 to JR) and the Danone Institute of Canada. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. CD received scholarship from the Fonds de recherche du Québec – Santé.

Author information

Authors and Affiliations

Authors

Contributions

SJW, IM, and JR participated in the conception and the design of the study. CD, MK, and JP made a substantial contribution to data acquisition. CD and JR participated in data analysis and interpretation. CD wrote the first draft of the manuscript. All authors revised it critically for important intellectual content and approved the final version. JR is responsible for the integrity of the study.

Corresponding author

Correspondence to Julie Robitaille.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugas, C., Kearney, M., Perron, J. et al. Breastfeeding and growth trajectory from birth to 5 years among children exposed and unexposed to gestational diabetes mellitus in utero. J Perinatol 41, 1033–1042 (2021). https://doi.org/10.1038/s41372-021-00932-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-00932-y

This article is cited by

Search

Quick links