Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth

Abstract

Very preterm birth (<32 weeks of gestation) has been associated with lifelong difficulties in a variety of neurocognitive functions. Magnetic resonance imaging (MRI) combined with advanced analytical approaches have been employed in order to increase our understanding of the neurodevelopmental problems that many very preterm born individuals face as they grow up. In this review, we will focus on two novel imaging techniques that have explored relationships between specific brain mechanisms and behavioural outcomes. These are functional MRI, which maps regional, time-varying changes in brain metabolism and diffusion-weighted MRI, which measures the displacement of water molecules in tissue and provides quantitative information about tissue microstructure. Identifying the neurobiological underpinning of the long-term sequelae associated with very preterm birth could inform the development and implementation of preventative interventions (before any cognitive problem emerges) and could facilitate the identification of behavioural targets for improving the life course outcomes of very preterm individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graphic representation of a verbal fluency paradigm.
Fig. 2: Examples of selected brain regions frequently identified as displaying haemodynamic responses that are both altered in preterm individuals compared to controls and associated with behavioural outcomes.
Fig. 3: Schematic overview of different reconstruction methods.
Fig. 4: Deterministic tractography example.
Fig. 5: Whole-brain probabilistic tractography of an infant’s brain [Figure courtesy of Dafnis Batalle].
Fig. 6: Illustration of key characteristics of the human connectome.
Fig. 7: Examples of selected white matter tracts frequently identified to have altered microstructure in preterm individuals compared to controls which are also associated with behavioural outcomes.

Similar content being viewed by others

References

  1. Kostovic I, Jovanov-Milosevic N. The development of cerebral connections during the first 20–45 weeks’ gestation. Semin Fetal Neonatal Med. 2006;11:415–22.

    Article  PubMed  Google Scholar 

  2. Kostović I, Judaš M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 2010;99:1119–27.

    Article  PubMed  Google Scholar 

  3. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8:110–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Inder TE, Warfield SK, Wang H, Hüppi PS, Volpe JJ. Abnormal cerebral structure is present at term in premature infants. Pediatrics. 2005;115:286–94.

    Article  PubMed  Google Scholar 

  5. Ball G, Srinivasan L, Aljabar P, Counsell SJ, Durighel G, Hajnal JV, et al. Development of cortical microstructure in the preterm human brain. Proc Natl Acad Sci USA. 2013;110:9541–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Engelhardt E, Inder TE, Alexopoulos D, Dierker DL, Hill J, Van Essen D, et al. Regional impairments of cortical folding in premature infants. Ann Neurol. 2015;77:154–62.

    Article  PubMed  Google Scholar 

  7. Ball G, Pazderova L, Chew A, Tusor N, Merchant N, Arichi T, et al. Thalamocortical connectivity predicts cognition in children born preterm. Cereb Cortex. 2015;25:4310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fischi-Gomez E, Vasung L, Meskaldji DE, Lazeyras F, Borradori-Tolsa C, Hagmann P, et al. Structural brain connectivity in school-age preterm infants provides evidence for impaired networks relevant for higher order cognitive skills and social cognition. Cereb Cortex. 2014;25:2793–805.

    Article  PubMed  Google Scholar 

  9. Batalle D, Hughes EJ, Zhang H, Tournier JD, Tusor N, Aljabar P, et al. Early development of structural networks and the impact of prematurity on brain connectivity. Neuroimage. 2017;149:379–92.

    Article  PubMed  Google Scholar 

  10. Tokariev A, Stjerna S, Lano A, Metsäranta M, Palva JM, Vanhatalo S. Preterm birth changes networks of newborn cortical activity. Cereb Cortex. 2018;29:814–26.

    Article  Google Scholar 

  11. Ball G, Aljabar P, Nongena P, Kennea N, Gonzalez-Cinca N, Falconer S, et al. Multimodal image analysis of clinical influences on preterm brain development. Ann Neurol. 2017;82:233–46.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord. 2018;10:38.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salvan P, Tournier JD, Batalle D, Falconer S, Chew A, Kennea N, et al. Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Hum Brain Mapp. 2017;38:3836–47.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Loh WY, Anderson PJ, Cheong JLY, Spittle AJ, Chen J, Lee KJ, et al. Neonatal basal ganglia and thalamic volumes: very preterm birth and 7-year neurodevelopmental outcomes. Pediatr Res. 2017;82:970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nosarti C, Giouroukou E, Micali N, Rifkin L, Morris RG, Murray RM. Impaired executive functioning in young adults born very preterm. J Int Neuropsychol Soc. 2007;13:571–81.

    Article  PubMed  Google Scholar 

  16. Burnett AC, Scratch SE, Anderson PJ. Executive function outcome in preterm adolescents. Early Hum Dev. 2013;89:215–20.

    Article  PubMed  Google Scholar 

  17. Breeman LD, Jaekel J, Baumann N, Bartmann P, Wolke D. Attention problems in very preterm children from childhood to adulthood: the Bavarian Longitudinal Study. J Child Psychol Psychiatry. 2016;57:132–40.

    Article  PubMed  Google Scholar 

  18. Allotey J, Zamora J, Cheong-See F, Kalidindi M, Arroyo-Manzano D, Asztalos E, et al. Cognitive, motor, behavioural and academic performances of children born preterm: a meta-analysis and systematic review involving 64 061 children. BJOG. 2018;125:16–25.

    Article  CAS  PubMed  Google Scholar 

  19. Mulder H, Pitchford NJ, Marlow N. Processing speed and working memory underlie academic attainment in very preterm children. Arch Dis Child Fetal Neonatal Ed. 2010;95:F267–272.

    Article  PubMed  Google Scholar 

  20. Jaekel J, Baumann N, Bartmann P, Wolke D. General cognitive but not mathematic abilities predict very preterm and healthy term born adults’ wealth. PLoS ONE. 2019;14:e0212789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kroll J, Karolis V, Brittain PJ, Tseng CJ, Froudist-Walsh S, Murray RM, et al. Real-life impact of executive function impairments in adults who were born very preterm. J Int Neuropsychol Soc. 2017;23:381–9.

    Article  PubMed  Google Scholar 

  22. van Os J, Jones P, Lewis G, Wadsworth M, Murray R. Developmental precursors of affective illness in a general population birth cohort. Arch Gen Psychiatry. 1997;54:625–31.

    Article  PubMed  Google Scholar 

  23. Montagna A, Nosarti C. Socio-emotional development following very preterm birth: pathways to psychopathology. Front Psychol. 2016;7:80.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lund LK, Vik T, Skranes J, Brubakk AM, Indredavik MS. Psychiatric morbidity in two low birth weight groups assessed by diagnostic interview in young adulthood. Acta Paediatr. 2011;100:598–604.

    Article  PubMed  Google Scholar 

  25. Nosarti C, Murray RM, Reichenberg A, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69:610–7.

    Article  Google Scholar 

  26. Happé F, Frith U. Annual research review: towards a developmental neuroscience of atypical social cognition. J Child Psychol Psychiatry. 2014;55:553–77.

    Article  PubMed  Google Scholar 

  27. Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci. 2008;9:148–58.

    Article  CAS  PubMed  Google Scholar 

  28. Blencowe H, Krasevec J, de Onis M, Black RE, An X, Stevens GA, et al. National, regional, and worldwide estimates of low birthweight in 2015, with trends from 2000: a systematic analysis. Lancet Glob Health. 2019;7:e849–e860.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Logothetis NK. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 2003;23:3963–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soares JM, Magalhaes R, Moreira PS, Sousa A, Ganz E, Sampaio A, et al. A hitchhiker’s guide to functional magnetic resonance imaging. Front Neurosci. 2016;10:515.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Glover GH. Overview of functional magnetic resonance imaging. Neurosurg Clin N Am. 2011;22:133–vii.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Taylor MJ, Donner EJ, Pang EW. fMRI and MEG in the study of typical and atypical cognitive development. Neurophysiol Clin. 2012;42:19–25.

    Article  CAS  PubMed  Google Scholar 

  33. Tseng C-EJ, Froudist-Walsh S, Kroll J, Karolis V, Brittain PJ, Palamin N, et al. Verbal fluency Is affected by altered brain lateralization in adults who were born very preterm. eNeuro. 2019;6:0274–0218.

    Article  Google Scholar 

  34. Kalpakidou AK, Allin MP, Walshe M, Giampietro V, McGuire PK, Rifkin L, et al. Functional neuroanatomy of executive function after neonatal brain injury in adults who were born very preterm. PLoS ONE. 2014;9:e113975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Froudist-Walsh S, Karolis V, Caldinelli C, Brittain PJ, Kroll J, Rodriguez-Toscano E, et al. Very early brain damage leads to remodeling of the working memory system in adulthood: a combined fMRI/tractography study. J Neurosci. 2015;35:15787–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schafer RJ, Lacadie C, Vohr B, Kesler SR, Katz KH, Schneider KC, et al. Alterations in functional connectivity for language in prematurely born adolescents. Brain. 2009;132:661–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Narberhaus A, Lawrence E, Allin MP, Walshe M, McGuire P, Rifkin L, et al. Neural substrates of visual paired associates in young adults with a history of very preterm birth: alterations in fronto-parieto-occipital networks and caudate nucleus. Neuroimage. 2009;47:1884–93.

    Article  PubMed  Google Scholar 

  38. Brittain PJ, Froudist Walsh S, Nam KW, Giampietro V, Karolis V, Murray RM, et al. Neural compensation in adulthood following very preterm birth demonstrated during a visual paired associates learning task. Neuroimage Clin. 2014;6:54–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lawrence EJ, McGuire PK, Allin M, Walshe M, Giampietro V, Murray RM, et al. The very preterm brain in young adulthood: the neural correlates of verbal paired associate learning. J Pediatr. 2010;156:889–95.

    Article  PubMed  Google Scholar 

  40. Aggleton JP. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neurosci Biobehav Rev. 2012;36:1579–96.

    Article  PubMed  Google Scholar 

  41. Neuner I, Stocker T, Kellermann T, Kircher T, Zilles K, Schneider F, et al. Wechsler Memory Scale Revised Edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Res. 2007;1177:66–78.

    Article  CAS  PubMed  Google Scholar 

  42. Daselaar SM, Prince SE, Cabeza R. When less means more: deactivations during encoding that predict subsequent memory. Neuroimage. 2004;23:921–7.

    Article  CAS  PubMed  Google Scholar 

  43. Nosarti C, Shergill SS, Allin MP, Walshe M, Rifkin L, Murray RM, et al. Neural substrates of letter fluency processing in young adults who were born very preterm: alterations in frontal and striatal regions. Neuroimage. 2009;47:1904–13.

    Article  PubMed  Google Scholar 

  44. Lawrence EJ, Froudist-Walsh S, Neilan R, Nam KW, Giampietro V, McGuire P, et al. Motor fMRI and cortical grey matter volume in adults born very preterm. Dev Cogn Neurosci. 2014;10C:1–9.

    Article  Google Scholar 

  45. Daamen M, Bäuml JG, Scheef L, Meng C, Jurcoane A, Jaekel J, et al. Neural correlates of executive attention in adults born very preterm. Neuroimage Clin. 2015;9:581–91.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev. 2001;108:624–52.

    Article  CAS  PubMed  Google Scholar 

  47. Daamen M, Bauml JG, Scheef L, Sorg C, Busch B, Baumann N, et al. Working memory in preterm-born adults: Load-dependent compensatory activity of the posterior default mode network. Hum Brain Mapp. 2015;36:1121–37.

    Article  PubMed  Google Scholar 

  48. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol. 2013;34:1866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp. 2002;15:247–62.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19:72–78.

    Article  PubMed  Google Scholar 

  51. Lang S, Duncan N, Northoff G. Resting-state functional magnetic resonance imaging: review of neurosurgical applications. Neurosurgery. 2014;74:453–65.

    Article  PubMed  Google Scholar 

  52. Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433–47.

    Article  CAS  PubMed  Google Scholar 

  53. Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE, et al. Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci USA. 2010;107:20015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Smyser CD, Inder TE, Shimony JS, Hill JE, Degnan AJ, Snyder AZ, et al. Longitudinal analysis of neural network development in preterm infants. Cereb Cortex. 2010;20:2852–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. White TP, Symington I, Castellanos NP, Brittain PJ, Froudist Walsh S, Nam KW, et al. Dysconnectivity of neurocognitive networks at rest in very-preterm born adults. Neuroimage Clin. 2014;4:352–65.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci. 2002;3:201–15.

    Article  CAS  PubMed  Google Scholar 

  57. Shang J, Fisher P, Bäuml JG, Daamen M, Baumann N, Zimmer C, et al. A machine learning investigation of volumetric and functional MRI abnormalities in adults born preterm. Hum Brain Mapp. 2019;40:4239–52.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bäuml JG, Meng C, Daamen M, Baumann N, Busch B, Bartmann P, et al. The association of children’s mathematic abilities with both adults’ cognitive abilities and intrinsic fronto-parietal networks is altered in preterm-born individuals. Brain Struct Funct. 2017;222:799–812.

    Article  PubMed  Google Scholar 

  59. Finke K, Neitzel J, Bäuml JG, Redel P, Müller HJ, Meng C, et al. Visual attention in preterm born adults: Specifically impaired attentional sub-mechanisms that link with altered intrinsic brain networks in a compensation-like mode. Neuroimage. 2015;107:95–106.

    Article  PubMed  Google Scholar 

  60. Constable RT, Vohr BR, Scheinost D, Benjamin JR, Fulbright RK, Lacadie C, et al. A left cerebellar pathway mediates language in prematurely-born young adults. Neuroimage. 2013;64:371–8.

    Article  PubMed  Google Scholar 

  61. Bickart KC, Dickerson BC, Barrett LF. The amygdala as a hub in brain networks that support social life. Neuropsychologia. 2014;63:235–48.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Papini C, White TP, Montagna A, Brittain PJ, Froudist-Walsh S, Kroll J, et al. Altered resting-state functional connectivity in emotion-processing brain regions in adults who were born very preterm. Psychol Med. 2016;46:1–15.

    Article  Google Scholar 

  63. Ho TC, Connolly CG, Henje Blom E, LeWinn KZ, Strigo IA, Paulus MP, et al. Emotion-dependent functional connectivity of the default mode network in adolescent depression. Biol Psychiatry. 2015;78:635–46.

    Article  PubMed  Google Scholar 

  64. Saxe R, Powell LJ. It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci. 2006;17:692–9.

    Article  PubMed  Google Scholar 

  65. Johns CB, Lacadie C, Vohr B, Ment LR, Scheinost D. Amygdala functional connectivity is associated with social impairments in preterm born young adults. Neuroimage Clin. 2019;21:101626.

    Article  PubMed  Google Scholar 

  66. Johnston MV. Clinical disorders of brain plasticity. Brain Dev. 2004;26:73–80.

    Article  PubMed  Google Scholar 

  67. Ana K. Early brain injury and plasticity: reorganization and functional recovery. Transl Neurosci. 2011;2:33–42.

    Google Scholar 

  68. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387:167–78.

    Article  CAS  PubMed  Google Scholar 

  69. Duffau H New insights into functional mapping in cerebral tumor surgery. New York, United States; Nova Science Publishers, Inc; 2009.

  70. Kennard MA. Age and other factors in motor recovery from precentral lesions in monkeys. Am J Physiol-Leg Content. 1936;115:138–46.

    Article  Google Scholar 

  71. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247–54.

    Article  CAS  PubMed  Google Scholar 

  72. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. Neuroimage. 2013;73:239–54.

    Article  PubMed  Google Scholar 

  74. Tournier JD. Diffusion MRI in the brain – Theory and concepts. Prog Nucl Magn Reson Spectrosc. 2019;112–3:1–16.

    Article  CAS  Google Scholar 

  75. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34:2747–66.

    Article  PubMed  Google Scholar 

  76. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage. 2004;23:1176–85.

    Article  PubMed  Google Scholar 

  77. Tournier JD, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35:1459–72.

    Article  PubMed  Google Scholar 

  78. Wilkins B, Lee N, Gajawelli N, Law M, Lepore N. Fiber estimation and tractography in diffusion MRI: development of simulated brain images and comparison of multi-fiber analysis methods at clinical b-values. Neuroimage. 2015;109:341–56.

    Article  PubMed  Google Scholar 

  79. Dell’Acqua F, Simmons A, Williams SC, Catani M. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum Brain Mapp. 2013;34:2464–83.

    Article  PubMed  Google Scholar 

  80. Dell’Acqua F, Catani M. Structural human brain networks: hot topics in diffusion tractography. Curr Opin Neurol. 2012;25:375–83.

    PubMed  Google Scholar 

  81. Smith RE, Tournier JD, Calamante F, Connelly A. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. Neuroimage. 2012;62:1924–38.

    Article  PubMed  Google Scholar 

  82. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage. 2007;34:144–55.

    Article  CAS  PubMed  Google Scholar 

  83. Allin MP, Kontis D, Walshe M, Wyatt J, Barker GJ, Kanaan RA, et al. White matter and cognition in adults who were born preterm. PLoS ONE. 2011;6:e24525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ball G, Boardman JP, Aljabar P, Pandit A, Arichi T, Merchant N, et al. The influence of preterm birth on the developing thalamocortical connectome. Cortex. 2013;49:1711–21.

    Article  PubMed  Google Scholar 

  85. Travis KE, Adams JN, Ben-Shachar M, Feldman HM. Decreased and increased anisotropy along major cerebral white matter tracts in preterm children and adolescents. PLoS ONE. 2015;10:e0142860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Murray AL, Thompson DK, Pascoe L, Leemans A, Inder TE, Doyle LW, et al. White matter abnormalities and impaired attention abilities in children born very preterm. Neuroimage. 2016;124:75–84.

    Article  PubMed  Google Scholar 

  87. Mürner-Lavanchy IM, Kelly CE, Reidy N, Doyle LW, Lee KJ, Inder T, et al. White matter microstructure is associated with language in children born very preterm. Neuroimage Clin. 2018;20:808–22.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dodson CK, Travis KE, Borchers LR, Marchman VA, Ben-Shachar M, Feldman HM. White matter properties associated with pre-reading skills in 6-year-old children born preterm and at term. Dev Med Child Neurol. 2018;60:695–702.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Young JM, Vandewouw MM, Morgan BR, Smith ML, Sled JG, Taylor MJ. Altered white matter development in children born very preterm. Brain Struct Funct. 2018;223:2129–41.

    Article  PubMed  Google Scholar 

  90. Skranes J, Vangberg TR, Kulseng S, Indredavik MS, Evensen KA, Martinussen M, et al. Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain. 2007;130:654–66.

    Article  CAS  PubMed  Google Scholar 

  91. Mullen KM, Vohr BR, Katz KH, Schneider KC, Lacadie C, Hampson M, et al. Preterm birth results in alterations in neural connectivity at age 16 years. Neuroimage. 2011;54:2563–70.

    Article  PubMed  Google Scholar 

  92. Vollmer B, Lundequist A, Martensson G, Nagy Z, Lagercrantz H, Smedler AC, et al. Correlation between white matter microstructure and executive functions suggests early developmental influence on long fibre tracts in preterm born adolescents. PLoS ONE. 2017;12:e0178893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Jurcoane A, Daamen M, Scheef L, Bauml JG, Meng C, Wohlschlager AM, et al. White matter alterations of the corticospinal tract in adults born very preterm and/or with very low birth weight. Hum Brain Mapp. 2016;37:289–99.

    Article  PubMed  Google Scholar 

  94. Eikenes L, Lohaugen GC, Brubakk AM, Skranes J, Haberg AK. Young adults born preterm with very low birth weight demonstrate widespread white matter alterations on brain DTI. Neuroimage. 2011;54:1774–85.

    Article  PubMed  Google Scholar 

  95. Caldinelli C, Froudist-Walsh S, Karolis V, Tseng CE, Allin MP, Walshe M, et al. White matter alterations to cingulum and fornix following very preterm birth and their relationship with cognitive functions. Neuroimage. 2017;150:373–82.

    Article  PubMed  Google Scholar 

  96. Fornito A, Bullmore ET. Connectomics: a new paradigm for understanding brain disease. Eur Neuropsychopharmacol. 2015;25:733–48.

    Article  CAS  PubMed  Google Scholar 

  97. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10:186–98.

    Article  CAS  PubMed  Google Scholar 

  98. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff, Pol HE. Efficiency of functional brain networks and intellectual performance. J Neurosci. 2009;29:7619–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hilger K, Ekman M, Fiebach CJ, Basten U. Intelligence is associated with the modular structure of intrinsic brain networks. Sci Rep. 2017;7:16088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bertolero MA, Yeo BTT, Bassett DS, D’Esposito M. A mechanistic model of connector hubs, modularity and cognition. Nat Hum Behav. 2018;2:765–77.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Ball G, Aljabar P, Zebari S, Tusor N, Arichi T, Merchant N, et al. Rich-club organization of the newborn human brain. Proc Natl Acad Sci USA. 2014;111:7456–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, et al. Structural network maturation of the preterm human brain. Neuroimage. 2019;185:699–710.

    Article  PubMed  Google Scholar 

  103. Fischi-Gomez E, Muñoz-Moreno E, Vasung L, Griffa A, Borradori-Tolsa C, Monnier M, et al. Brain network characterization of high-risk preterm-born school-age children. Neuroimage Clin. 2016;11:195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Karolis VR, Froudist-Walsh S, Brittain PJ, Kroll J, Ball G, Edwards AD, et al. Reinforcement of the brain’s rich-club architecture following early neurodevelopmental disruption caused by very preterm birth. Cereb Cortex. 2016;26:1322–35.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tseng C-EJ, Froudist-Walsh S, Brittain PJ, Karolis V, Caldinelli C, Kroll J, et al. A multimodal imaging study of recognition memory in very preterm born adults. Hum Brain Mapp. 2017;38:644–55.

    Article  PubMed  Google Scholar 

  106. Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, et al. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. Neuroimage Clin. 2019;23:101851.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Solsnes AE, Sripada K, Yendiki A, Bjuland KJ, Ostgard HF, Aanes S, et al. Limited microstructural and connectivity deficits despite subcortical volume reductions in school-aged children born preterm with very low birth weight. Neuroimage. 2016;130:24–34.

    Article  PubMed  Google Scholar 

  108. Urbain C, Sato J, Hammill C, Duerden EG, Taylor MJ. Converging function, structure, and behavioural features of emotion regulation in very preterm children. Hum Brain Mapp. 2019;40:3385–97.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Salvan P, Froudist Walsh S, Allin MP, Walshe M, Murray RM, Bhattacharyya S, et al. Road work on memory lane-functional and structural alterations to the learning and memory circuit in adults born very preterm. Neuroimage. 2014;102:152–61.

    Article  PubMed  Google Scholar 

  110. Aanes S, Bjuland KJ, Skranes J, Lohaugen GC. Memory function and hippocampal volumes in preterm born very-low-birth-weight (VLBW) young adults. Neuroimage. 2015;105:76–83.

    Article  PubMed  Google Scholar 

  111. Ly M, Adluru N, Destiche DJ, Lu SY, Oh JM, Hoscheidt SM, et al. Fornix microstructure and memory performance is associated with altered neural connectivity during episodic recognition. J Int Neuropsychol Soc. 2016;22:191–204.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Turkeltaub PE, Coslett HB, Thomas AL, Faseyitan O, Benson J, Norise C, et al. The right hemisphere is not unitary in its role in aphasia recovery. Cortex. 2012;48:1179–86.

    Article  PubMed  Google Scholar 

  113. Guttmacher AE, Raju TNK. The child is father of the man, and mother of the woman. Pediatrics. 2014;134:e1411–e1412.

    Article  PubMed  Google Scholar 

  114. Kelly CE, Thompson DK, Chen J, Leemans A, Adamson CL, Inder TE, et al. Axon density and axon orientation dispersion in children born preterm. Hum Brain Mapp. 2016;37:3080–102.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Young JM, Vandewouw MM, Mossad SI, Morgan BR, Lee W, Smith ML, et al. White matter microstructural differences identified using multi-shell diffusion imaging in six-year-old children born very preterm. Neuroimage Clin. 2019;23:101855.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Pannek K, Fripp J, George JM, Fiori S, Colditz PB, Boyd RN, et al. Fixel-based analysis reveals alterations is brain microstructure and macrostructure of preterm-born infants at term equivalent age. Neuroimage Clin. 2018;18:51–59.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Pecheva D, Tournier JD, Pietsch M, Christiaens D, Batalle D, Alexander DC, et al. Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. Neuroimage Clin. 2019;23:101820.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Genc S, Smith RE, Malpas CB, Anderson V, Nicholson JM, Efron D, et al. Development of white matter fibre density and morphology over childhood: a longitudinal fixel-based analysis. Neuroimage. 2018;183:666–76.

    Article  PubMed  Google Scholar 

  119. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–16.

    Article  PubMed  Google Scholar 

  120. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, et al. Investigating white matter fibre density and morphology using fixel-based analysis. Neuroimage. 2017;144:58–73.

    Article  PubMed  Google Scholar 

  121. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, et al. BrainNetCNN: Convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage. 2017;146:1038–49.

    Article  PubMed  Google Scholar 

  122. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J Neurosci Methods. 2016;264:47–56.

    Article  PubMed  Google Scholar 

  123. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Nosarti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanel, D., Counsell, S.J. & Nosarti, C. Advances in functional and diffusion neuroimaging research into the long-term consequences of very preterm birth. J Perinatol 41, 689–706 (2021). https://doi.org/10.1038/s41372-020-00865-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-020-00865-y

This article is cited by

Search

Quick links