Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic relatedness of Gram-negative bacteria colonizing gut and skin of neonates and mother’s own milk

Abstract

Objective

We described colonization of mother’s own milk with Gram-negative bacteria and its relationship with neonatal colonization.

Study Design

Gram-negative bacteria isolated from weekly collected stool, skin and mother’s own milk of hospitalized preterm (n = 49) and healthy term neonates (n = 20) were genotyped. Colonization-related factors were determined by logistic regression.

Results

Gram-negative bacteria were isolated from mother’s own milk of 22.4% (n = 11) and 15% (n = 3) of mothers of preterm and term neonates, respectively. According to pulsed-field gel electrophoresis genetically similar strains were present in mother’s own milk and gut of 8.2% (n = 4) of mother–preterm neonate, but none of mother–term neonate pairs. In three of four late-onset sepsis caused by Gram-negative bacteria, colonization of gut, but not mother’s own milk, with invasive species preceded late-onset sepsis.

Conclusions

Colonization of mother’s own milk with Gram-negative bacteria is uncommon and transmission to neonatal gut may occur in less than one-tenth of neonate–mother pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parm U, Metsvaht T, Sepp E, Ilmoja ML, Pisarev H, Pauskar M, et al. Impact of empiric antibiotic regimen on bowel colonization in neonates with suspected early onset sepsis. Eur J Clin Microbiol Infect Dis. 2010;29:807–16.

    Article  CAS  PubMed  Google Scholar 

  2. Adlerberth I, Lindberg E, Aberg N, Hesselmar B, Saalman R, Strannegård IL, et al. Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res. 2006;59:96–101.

    Article  PubMed  Google Scholar 

  3. Cailes B, Kortsalioudaki C, Buttery J, Pattnayak S, Greenough A, Matthes J, et al. Epidemiology of UK neonatal infections: the neonIN infection surveillance network. Arch Dis Child Fetal Neonatal Ed. 2017; e-pub ahead of print 5 December 2017; https://doi.org/10.1136/archdischild-2017-313203.

    Article  PubMed  Google Scholar 

  4. Carl MA, Ndao IM, Springman AC, Manning SD, Johnson JR, Johnston BD, et al. Sepsis from the gut: the enteric habitat of bacteria that cause late-onset neonatal bloodstream infections. Clin Infect Dis. 2014;58:1211–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li SW, Watanabe K, Hsu CC, Chao SH, Yang ZH, Lin YJ, et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and Mainland China. Front Microbiol. 2017;8:965.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016;7:492.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome. 2016;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Widger J, O’Connell NH, Stack T. Breast milk causing neonatal sepsis and death. Clin Microbiol Infect. 2010;16:1796–8.

    Article  CAS  PubMed  Google Scholar 

  9. Weems MF, Dereddy NR, Arnold SR. Mother’s milk as a source of Enterobacter cloacae sepsis in a preterm infant. Breastfeed Med. 2015;10:503–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Godambe S, Shah PS, Shah V. Breast milk as a source of late onset neonatal sepsis. Pediatr Infect Dis J. 2005;24:381–2.

    Article  PubMed  Google Scholar 

  11. Dicky O, Ehlinger V, Montjaux N, Gremmo-Féger G, Sizun J, Rozé JC, et al. Policy of feeding very preterm infants with their mother’s own fresh expressed milk was associated with a reduced risk of bronchopulmonary dysplasia. Acta Paediatr. 2017;106:755–62.

    Article  PubMed  Google Scholar 

  12. Mense L, Rößler S, Hanusch R, Roßberg C, Rüdiger M. Bacterial contamination of mechanically extracted breast milk. Am J Perinatol. 2014;31:293–8.

    Article  PubMed  Google Scholar 

  13. Schanler RJ, Fraley JK, Lau C, Hurst NM, Horvath L, Rossmann SN. Breastmilk cultures and infection in extremely premature infants. J Perinatol. 2011;31:335–8.

    Article  CAS  PubMed  Google Scholar 

  14. Corpeleijn WE, Kouwenhoven SM, Paap MC, van Vliet I, Scheerder I, Muizer Y, et al. Intake of own mother’s milk during the first days of life is associated with decreased morbidity and mortality in very low birth weight infants during the first 60 days of life. Neonatology. 2012;102:276–81.

    Article  CAS  PubMed  Google Scholar 

  15. Picaud JC, Buffin R, Gremmo-Feger G, Rigo J, Putet G, Casper C, et al. Review concludes that specific recommendations are needed to harmonise the provision of fresh mother’s milk to their preterm infants. Acta Paediatr. 2018;107:1145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parm Ü, Metsvaht T, Ilmoja ML, Lutsar I. Gut colonization by aerobic microorganisms is associated with route and type of nutrition in premature neonates. Nutr Res. 2015;35:496–503.

    Article  CAS  PubMed  Google Scholar 

  17. Gregory KE, Samuel BS, Houghteling P, Shan G, Ausubel FM, Sadreyev RI, et al. Influence of maternal breast milk ingestion on acquisition of the intestinal microbiome in preterm infants. Microbiome. 2016;4:68.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171:647–54.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cong X, Xu W, Janton S, Henderson WA, Matson A, McGrath JM, et al. Gut microbiome developmental patterns in early life of preterm infants: impacts of feeding and gender. PLoS ONE. 2016;11:e0152751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang M, Li M, Wu S, Lebrilla CB, Chapkin RS, Ivanov I, et al. Fecal microbiota composition of breast-fed infants is correlated with human milk oligosaccharides consumed. J Pediatr Gastroenterol Nutr. 2015;60:825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soeorg H, Metsvaht T, Eelmae I, Merila M, Treumuth S, Huik K, et al. The role of breast milk in the colonization of neonatal gut and skin with coagulase-negative staphylococci. Pediatr Res. 2017;82:759–67.

    Article  PubMed  Google Scholar 

  22. Simpson PJ, Stanton C, Fitzgerald GF, Ross RP. Genomic diversity and relatedness of bifidobacteria isolated from a porcine cecum. J Bacteriol. 2003;185:2571–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soeorg H, Metsvaht T, Eelmäe I, Metsvaht HK, Treumuth S, Merila M, et al. Coagulase-negative Staphylococci in human milk from mothers of preterm compared with term neonates. J Hum Lact. 2017;33:329–40.

    Article  PubMed  Google Scholar 

  24. Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119:e724–32.

    Article  PubMed  Google Scholar 

  25. Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017;2:e00164–16.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lindemann PC, Foshaugen I, Lindemann R. Characteristics of breast milk and serology of women donating breast milk to a milk bank. Arch Dis Child Fetal Neonatal Ed. 2004;89:F440–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Almutawif Y, Hartmann B, Lloyd M, Erber W, Geddes D. A retrospective audit of bacterial culture results of donated human milk in Perth, Western Australia. Early Hum Dev. 2017;105:1–6.

    Article  PubMed  Google Scholar 

  28. Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr. 2013;110:1253–62.

    Article  CAS  PubMed  Google Scholar 

  29. Chen PW, Tseng SY, Huang MS. Antibiotic susceptibility of commensal bacteria from human milk. Curr Microbiol. 2016;72:113–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jiménez E, Delgado S, Fernández L, García N, Albújar M, Gómez A, et al. Assessment of the bacterial diversity of human colostrum and screening of staphylococcal and enterococcal populations for potential virulence factors. Res Microbiol. 2008;159:595–601.

    Article  PubMed  Google Scholar 

  31. Witt A, Mason MJ, Burgess K, Flocke S, Zyzanski S. A case control study of bacterial species and colony count in milk of breastfeeding women with chronic pain. Breastfeed Med. 2014;9:29–34.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rozolen CD, Goulart AL, Kopelman BI. Is breast milk collected at home suitable for raw consumption by neonates in Brazilian public neonatal intensive care units? J Hum Lact. 2006;22:418–25.

    Article  PubMed  Google Scholar 

  33. Nakamura K, Kaneko M, Abe Y, Yamamoto N, Mori H, Yoshida A, et al. Outbreak of extended-spectrum β-lactamase-producing Escherichia coli transmitted through breast milk sharing in a neonatal intensive care unit. J Hosp Infect. 2016;92:42–46.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy K, Curley D, O’Callaghan TF, O’Shea CA, Dempsey EM, O’Toole PW, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep. 2017;7:40597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Lu H, Feng Z, Cao J, Fang C, Xu X, et al. Development of human breast milk microbiota-associated mice as a method to identify breast milk bacteria capable of colonizing gut. Front Microbiol. 2017;8:1242.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brooks B, Olm MR, Firek BA, Baker R, Thomas BC, Morowitz MJ, et al. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat Commun. 2017;8:1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gómez M, Moles L, Melgar A, Ureta N, Bustos G, Fernández L, et al. Early gut colonization of preterm infants: effect of enteral feeding tubes. J Pediatr Gastroenterol Nutr. 2016;62:893–900.

    Article  PubMed  Google Scholar 

  38. Moles L, Gómez M, Jiménez E, Fernández L, Bustos G, Chaves F, et al. Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin Microbiol Infect. 2015;21:936.e931–10.

    Article  Google Scholar 

  39. Duman M, Abacioglu H, Karaman M, Duman N, Ozkan H. Beta-lactam antibiotic resistance in aerobic commensal fecal flora of newborns. Pediatr Int. 2005;47:267–73.

    Article  CAS  PubMed  Google Scholar 

  40. Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Macrae MB, Shannon KP, Rayner DM, Kaiser AM, Hoffman PN, French GL. A simultaneous outbreak on a neonatal unit of two strains of multiply antibiotic resistant Klebsiella pneumoniae controllable only by ward closure. J Hosp Infect. 2001;49:183–92.

    Article  CAS  PubMed  Google Scholar 

  42. Rettedal S, Löhr IH, Natås O, Giske CG, Sundsfjord A, Øymar K. First outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a Norwegian neonatal intensive care unit; associated with contaminated breast milk and resolved by strict cohorting. APMIS. 2012;120:612–21.

    Article  PubMed  Google Scholar 

  43. Zabel LT, Heeg P, Goelz R. Surveillance of Pseudomonas aeruginosa-isolates in a neonatal intensive care unit over a one year-period. Int J Hyg Environ Health. 2004;207:259–66.

    Article  PubMed  Google Scholar 

  44. Moissenet D, Salauze B, Clermont O, Bingen E, Arlet G, Denamur E, et al. Meningitis caused by Escherichia coli producing TEM-52 extended-spectrum beta-lactamase within an extensive outbreak in a neonatal ward: epidemiological investigation and characterization of the strain. J Clin Microbiol. 2010;48:2459–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soeorg H, Treumuth S, Metsvaht H, Eelmäe I, Merila M, Ilmoja M, et al. Higher intake of coagulase-negative Staphylococci from maternal milk promotes gut colonization with mecA-negative Staphylococcus epidermidis in preterm neonates. J Perinatol. 2018; e-pub ahead of print 3 August 2018; https://doi.org/10.1038/s41372-018-0183-y.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the study nurses Marika Zuihhina, Eve Kaur and Tuuli Tammekunn; clinical microbiologist Dr. Marika Jürna-Ellam; laboratory assistants Dagmar Hoidmets, Tiiu Rööp and Sandra Sokmann; and all the study participants. This study was funded by Estonian Research Council (IUT34-24), European Regional Development Fund (Project SFOS WP1-NeuroAIDS), Archimedes Foundation (Project No. 3.2.1001.11-0032) and supported by Estonian Ministry of Education and Research (Grant No. KOGU-HUMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiie Soeorg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parm, Ü., Štšepetova, J., Eelmäe, I. et al. Genetic relatedness of Gram-negative bacteria colonizing gut and skin of neonates and mother’s own milk. J Perinatol 38, 1503–1511 (2018). https://doi.org/10.1038/s41372-018-0220-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-018-0220-x

Search

Quick links