Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum metabolites of hypertension among Chinese adolescents aged 12–17 years

Abstract

The regulatory mechanisms of hypertension in youth are incompletely understood. We aimed to identify potential serum metabolic alterations associated with hypertension in adolescents. A 1:1 age- and sex-matched case-control study including 30 hypertensive adolescents aged 12–17 years and 30 normotensive adolescents for the training set and 14 hypertensive adolescents and 14 normotensive adolescents for the test set was performed, which came from one cross-sectional study in Ningxia, China. Hypertension was defined based on blood pressure (BP) values measured on three different occasions according to the BP reference of Chinese children and adolescents. Untargeted ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry was used to identify differential metabolites between hypertensive and normotensive adolescents. A total of 77 metabolites in positive mode and 101 in negative mode were identified (VIP > 1.0 and P < 0.05). After adjustment for the false discovery rate, 4 differential metabolites in positive mode and 10 in negative mode were found (Q value < 0.05). The logistic regression model adjusted for body mass index and lipid profile selected four significant metabolites (4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene). The main metabolic pathways of amino acid metabolism, pantothenate and CoA biosynthesis, glyoxylate and dicarboxylate metabolism, fructose and mannose metabolism, and linoleic acid metabolism may contribute to the development of hypertension in Chinese adolescents. Based on the receiver operating characteristic plot, 4-hydroxybutanoic acid, L-serine, acetone, and pterostilbene may preliminarily help distinguish hypertension from normal BP in adolescents, with AUC values of 0.857 in the training set and 0.934 in the test set. The identified metabolites and pathways may foster a better understanding of hypertension pathogenesis in Chinese adolescents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: OPLS-DA score plots for differentiating hypertensive and normotensive adolescents in the training set.
Fig. 2: Validation plots for the OPLS-DA model in the training set.
Fig. 3
Fig. 4: Analysis of ROC curves of three metabolites identified based on logistic regression analysis.

Similar content being viewed by others

Data availability

Data is available from the corresponding author BX (Email: xibo2007@126.com).

References

  1. Zhou M, Wang H, Zeng X, Yin P, Zhu J, Chen W, et al. Mortality, morbidity, and risk factors in china and its provinces, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet.2019;394:1145–58.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Song P, Zhang Y, Yu J, Zha M, Zhu Y, Rahimi K, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019:1–10.

  3. Yang L, Magnussen CG, Yang L, Bovet P, Xi B. Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review. Hypertension.2020;75:948–55.

    Article  CAS  PubMed  Google Scholar 

  4. Wurtz P, Raiko JR, Magnussen CG, Soininen P, Kangas AJ, Tynkkynen T, et al. High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur Heart J. 2012;33:2307–16.

    Article  PubMed  Google Scholar 

  5. Surendran P, Drenos F, Young R, Warren H, Cook JP, Manning AK, et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet. 2016;48:1151–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet. 2018;50:1412–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Warembourg C, Maitre L, Tamayo-Uria I, Fossati S, Roumeliotaki T, Aasvang GM, et al. Early-life environmental exposures and blood pressure in children. J Am Coll Cardiol. 2019;74:1317–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: Jacc health promotion series. J Am Coll Cardiol. 2018;72:1278–93.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, et al. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature.2008;453:396–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng Y, Yu B, Alexander D, Mosley TH, Heiss G, Nettleton JA, et al. Metabolomics and incident hypertension among blacks: the atherosclerosis risk in communities study. Hypertension.2013;62:398–403.

    Article  CAS  PubMed  Google Scholar 

  11. Menni C, Graham D, Kastenmuller G, Alharbi NH, Alsanosi SM, McBride M, et al. Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension.2015;66:422–9.

    Article  CAS  PubMed  Google Scholar 

  12. Hao Y, Wang Y, Xi L, Li G, Zhao F, Qi Y, et al. A nested case-control study of association between metabolome and hypertension risk. Biomed Res Int. 2016;2016:7646979.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Walejko JM, Kim S, Goel R, Handberg EM, Richards EM, Pepine CJ, et al. Gut microbiota and serum metabolite differences in african americans and white americans with high blood pressure. Int J Cardiol. 2018;271:336–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. He WJ, Li C, Mi X, Shi M, Gu X, Bazzano LA, et al. An untargeted metabolomics study of blood pressure: findings from the bogalusa heart study. J Hypertens. 2020;38:1302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vignoli A, Tenori L, Luchinat C, Saccenti E. Age and sex effects on plasma metabolite association networks in healthy subjects. J Proteome Res. 2018;17:97–107.

    Article  CAS  PubMed  Google Scholar 

  16. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc. 2011;6:1060–83.

    Article  CAS  PubMed  Google Scholar 

  17. Meng L, Hou D, Shan X, Mi J. Accuracy evaluation of omron hem-7012 electronic sphygmomanometers in measuring blood pressure of children and adolescents. Chin J Hypertension. 2013;21:158–62.

    Google Scholar 

  18. Mi J, Wang TY, Meng LH, G.J. Z, Han SM, Zhong Y, et al. Development of blood pressure reference standards for chinese children and adolescents. Chin J Evid Based Pediatr. 2010;5:4–14.

    Google Scholar 

  19. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100:9440–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang ZY, Marrachelli VG, Yang WY, Trenson S, Huang QF, Wei FF, et al. Diastolic left ventricular function in relation to circulating metabolic biomarkers in a population study. Eur J Prev Cardiol. 2019;26:22–32.

    Article  PubMed  Google Scholar 

  21. Wang L, Hou E, Wang L, Wang Y, Yang L, Zheng X, et al. Reconstruction and analysis of correlation networks based on gc-ms metabolomics data for young hypertensive men. Anal Chim Acta. 2015;854:95–105.

    Article  CAS  PubMed  Google Scholar 

  22. Contaifer D Jr, Buckley LF, Wohlford G, Kumar NG, Morriss JM, Ranasinghe AD, et al. Metabolic modulation predicts heart failure tests performance. PLoS ONE. 2019;14:e0218153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Poggiogalle E, Fontana M, Giusti AM, Pinto A, Iannucci G, Lenzi A, et al. Amino acids and hypertension in adults. Nutrients. 2019;11.

  24. Aggoun Y, Farpour-Lambert NJ, Marchand LM, Golay E, Maggio AB, Beghetti M. Impaired endothelial and smooth muscle functions and arterial stiffness appear before puberty in obese children and are associated with elevated ambulatory blood pressure. Eur Heart J. 2008;29:792–9.

    Article  PubMed  Google Scholar 

  25. Li X, Kumar A, Carmeliet P. Metabolic pathways fueling the endothelial cell drive. Annu Rev Physiol. 2019;81:483–503.

    Article  CAS  PubMed  Google Scholar 

  26. Rochette L, Lorin J, Zeller M, Guilland JC, Lorgis L, Cottin Y, et al. Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: possible therapeutic targets? Pharm Ther. 2013;140:239–57.

    Article  CAS  Google Scholar 

  27. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17:448–53.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tibbetts AS, Appling DR. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu Rev Nutr. 2010;30:57–81.

    Article  CAS  PubMed  Google Scholar 

  29. Mels CM, Delles C, Louw R, Schutte AE. Central systolic pressure and a nonessential amino acid metabolomics profile: the african prospective study on the early detection and identification of cardiovascular disease and hypertension. J Hypertens. 2019;37:1157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dumas SJ, Bru-Mercier G, Courboulin A, Quatredeniers M, Rucker-Martin C, Antigny F, et al. Nmda-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension. Circulation.2018;137:2371–89.

    Article  CAS  PubMed  Google Scholar 

  31. Mangge H, Stelzer I, Reininghaus EZ, Weghuber D, Postolache TT, Fuchs D. Disturbed tryptophan metabolism in cardiovascular disease. Curr Med Chem. 2014;21:1931–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Siomkajlo M, Rybka J, Mierzchala-Pasierb M, Gamian A, Stankiewicz-Olczyk J, Bolanowski M, et al. Specific plasma amino acid disturbances associated with metabolic syndrome. Endocrine.2017;58:553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamaguchi N, Mahbub MH, Takahashi H, Hase R, Ishimaru Y, Sunagawa H, et al. Plasma free amino acid profiles evaluate risk of metabolic syndrome, diabetes, dyslipidemia, and hypertension in a large asian population. Environ Health Prev Med. 2017;22:35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yang R, Dong J, Zhao H, Li H, Guo H, Wang S, et al. Association of branched-chain amino acids with carotid intima-media thickness and coronary artery disease risk factors. PLoS ONE. 2014;9:e99598.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhenyukh O, Gonzalez-Amor M, Rodrigues-Diez RR, Esteban V, Ruiz-Ortega M, Salaices M, et al. Branched-chain amino acids promote endothelial dysfunction through increased reactive oxygen species generation and inflammation. J Cell Mol Med. 2018;22:4948–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mirmiran P, Teymoori F, Asghari G, Azizi F. Dietary intakes of branched chain amino acids and the incidence of hypertension: a population-based prospective cohort study. Arch Iran Med. 2019;22:182–8.

    PubMed  Google Scholar 

  37. Lee S, Zhang C, Kilicarslan M, Piening BD, Bjornson E, Hallstrom BM, et al. Integrated network analysis reveals an association between plasma mannose levels and insulin resistance. Cell Metab. 2016;24:172–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang F, Han L, Hu D. Fasting insulin, insulin resistance and risk of hypertension in the general population: a meta-analysis. Clin Chim Acta. 2017;464:57–63.

    Article  CAS  PubMed  Google Scholar 

  39. Zhao H, Zhang Y, Liu B, Zhang L, Bao M, Li L, et al. A pilot study to identify the longitudinal serum metabolite profiles to predict the development of hyperuricemia in essential hypertension. Clin Chim Acta. 2020;510:466–74.

    Article  CAS  PubMed  Google Scholar 

  40. Rotroff DM, Shahin MH, Gurley SB, Zhu H, Motsinger-Reif A, Meisner M, et al. Pharmacometabolomic assessments of atenolol and hydrochlorothiazide treatment reveal novel drug response phenotypes. CPT Pharmacomet Syst Pharmacol. 2015;4:669–79.

    Article  CAS  Google Scholar 

  41. Riche DM, Riche KD, Blackshear CT, McEwen CL, Sherman JJ, Wofford MR, et al. Pterostilbene on metabolic parameters: a randomized, double-blind, and placebo-controlled trial. Evid Based Complement Altern Med. 2014;2014:459165.

    Article  Google Scholar 

  42. Hicks AR, Varner KJ. Cardiovascular responses elicited by intragastric administration of bdl and ghb. J Recept Signal Transduct Res. 2008;28:429–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhong L, Zhang JP, Nuermaimaiti AG, Yunusi KX. Study on plasmatic metabolomics of uygur patients with essential hypertension based on nuclear magnetic resonance technique. Eur Rev Med Pharm Sci. 2014;18:3673–80.

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the National Natural Science Foundation of China for the funding support.

Funding

This work was supported by the National Natural Science Foundation of China (81722039, 81673195).

Author information

Authors and Affiliations

Authors

Contributions

Study design: BX. Data collection: WD, MZ. Analysis and interpretation of data: JS, XL. Drafting of the paper: JS, WD. Approval of the final version for publication: all the authors.

Corresponding author

Correspondence to Bo Xi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study protocol was approved by the Institutional Ethics Review Board of the School of Public Health, Shandong University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Ding, W., Liu, X. et al. Serum metabolites of hypertension among Chinese adolescents aged 12–17 years. J Hum Hypertens 36, 925–932 (2022). https://doi.org/10.1038/s41371-021-00602-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00602-8

Search

Quick links