Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolutionary trilogy of malaria, angiotensin II and hypertension: deeper insights and the way forward

Abstract

Despite clinical and pathological distinctions between malaria and hypertension, accumulated epidemiological and evolutionary evidence indicate the need of deeper understanding how severe malaria contributes to elevated hypertension risk. Malaria is said to exert strong selection pressure on the host genome, thus selecting certain genetic polymorphisms. Few candidate polymorphisms have also been reported in the RAS (ACE I/D and ACE2 rs2106809) that are shown to increase angiotensin II (ang II) levels in a combinatorial manner. The raised ang II has some antiplasmodial actions in addition to protecting against severe/cerebral malaria. It is hypothesized that RAS polymorphisms may have been naturally selected over time in the malaria-endemic areas in such a way that hypertension, or the risk thereof, is higher in such areas as compared to non-malaria endemic areas. The purpose of this review is to gain deeper insights into various sparse evidence linking malaria and hypertension and suggesting a way forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A simplified cartoon of renin-angiotensin system (RAS) representing the physiology and effect of malaria exposure.

Similar content being viewed by others

References

  1. Gouda HN, Charlson F, Sorsdahl K, Ahmadzada S, Ferrari AJ, Erskine H, et al. Burden of non-communicable diseases in sub-Saharan Africa, 1990–2017: results from the Global Burden of Disease Study 2017. Lancet Glob Heal. 2019;7:e1375–87.

    Article  Google Scholar 

  2. Kwiatkowski DP. How malaria has affected the human genome and what human genetics can teach us about malaria. Am J Hum Genet. 2005;77:171–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miller LH. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans. Proc Natl Acad Sci USA 1994;91:2415–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gallego-Delgado J, Rodriguez A. Malaria and hypertension. Another co-evolututionary adaptation?. Front Cell Infect Microbiol. 2014;4:1–4.

    Article  Google Scholar 

  5. Volpe M, Battistoni A, Mancia G. Angiotensin II-linked hypothesis to understand the advantage of the coevolution of hypertension and malaria. Circ Res. 2016;119:1046–8.

    Article  CAS  PubMed  Google Scholar 

  6. Etyang AO, Smeeth L, Cruickshank JK, Scott JAG. The malaria-high blood pressure hypothesis. Circ Res. 2016;119:36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallego-delgado J, Ruiz-ortega M, Gallego-delgado J, Basu-roy U, Ty M, Alique M, et al. Angiotensin receptors and b -catenin regulate brain endothelial integrity in malaria. J Clin Invest. 2016;126:4016–29.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rigat B, Hubert C, Alhenc-gelas F, Cambien F, Corvol P, Soubrier F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990;86:1343–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu D, Chen Y, Zhang P, Zhong J, Jin L, Zhang C, et al. Association between circulating levels of ACE2-Ang-(1-7)-MAS axis and ACE2 gene polymorphisms in hypertensive patients. Medicine. 2016;95:1–6.

    CAS  Google Scholar 

  10. Chen YY, Zhang P, Zhou XM, Liu D, Zhong JC, Zhang CJ, et al. Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J Clin Pharm Ther. 2018;43:189–95.

    Article  CAS  PubMed  Google Scholar 

  11. Smithies O, Kim H-S, Takahashi N, Edgell MH. Importance of quantitative genetic variations in the etiology of hypertension. Kidney Int. 2000;58:2265–80.

    Article  CAS  PubMed  Google Scholar 

  12. Neel JV, Weder AB, Julius S. Type II diabetes, essential hypertension, and obesity as “syndromes of impaired genetic homeostasis”: the “thrifty genotype” hypothesis enters the 21st century. Perspect Biol Med. 1998;42:44–74.

    Article  CAS  PubMed  Google Scholar 

  13. Ghafil FA, Mohammad BI, Al-Janabi HS, Hadi NR, Al-Aubaidy HA. Genetic polymorphism of angiotensin converting enzyme and angiotensin II type 1 receptors and their impact on the outcome of acute coronary syndrome. Genomics. 2019;112:867–72.

    Article  PubMed  Google Scholar 

  14. Tiwari A, De A, Pande V, Sinha A. Human angiotensin-converting enzyme may be under malaria selection pressure: a need to explore. Hum Cell. 2021;34:289–90.

    Article  CAS  PubMed  Google Scholar 

  15. Fan X, Wang Y, Sun K, Zhang W, Yang X, Wang S, et al. Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of captopril in women. Clin Pharm Ther. 2007;82:187–96.

    Article  CAS  Google Scholar 

  16. Maciel C, de Oliveira VX, Fázio MA, Nacif-Pimenta R, Miranda A, Pimenta PFP, et al. Anti-plasmodium activity of angiotensin II and related synthetic peptides. PLoS One. 2008;3:e3296.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Silva AF, Bastos EL, Torres MDT, Costa-Da-Silva AL, Ioshino RS, Capurro ML, et al. Antiplasmodial activity study of angiotensin II via Ala scan analogs. J Pept Sci. 2014;20:640–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gallego-Delgado J, Baravian C, Edagha I, Ty MC, Ruiz-Ortega M, Xu W, et al. Angiotensin II moderately decreases Plasmodium infection and experimental cerebral malaria in mice. PLoS One. 2015;10:1–8.

    Article  Google Scholar 

  19. Chamlian M, Bastos EL, Maciel C, Capurro ML, Miranda A, Silva AF, et al. A study of the anti-plasmodium activity of angiotensin II analogs. J Pept Sci. 2013;19:575–80.

    Article  CAS  PubMed  Google Scholar 

  20. Marcelo Der Torossian T, Silva AF, Alves FL, Capurro ML, Miranda A, Vani, et al. Highly potential antiplasmodial restricted peptides. Chem Biol Drug Des. 2014;85:163–71.

    Article  PubMed  Google Scholar 

  21. Silva AF, de Souza Silva L, Alves FL, Der Torossian Torres M, de SáPinheiro AA, Miranda A, et al. Effects of the angiotensin II Ala-scan analogs in erythrocytic cycle of Plasmodium falciparum (in vitro) and Plasmodium gallinaceum (ex vivo). Exp Parasitol. 2015;153:1–7.

    Article  CAS  PubMed  Google Scholar 

  22. Silva AF, Torres MDT, Silva LDS, Alves FL, Acácia A, Pinheiro DS, et al. New linear antiplasmodial peptides related to angiotensin II. Malar J. 2015;14:1–10.

    Article  CAS  Google Scholar 

  23. Torres MDT, Silva AF, Alves FL, Capurro ML, Miranda A, Cordeiro RM, et al. Evidences for the action mechanism of angiotensin II and its analogs on Plasmodium sporozoite membranes. J Pept Sci. 2016;22:132–42.

    Article  CAS  PubMed  Google Scholar 

  24. Silva AF, Torres MDT, Silva LS, Alves FL, De Sá Pinheiro AA, Miranda A, et al. Angiotensin II-derived constrained peptides with antiplasmodial activity and suppressed vasoconstriction. Sci Rep. 2017;7:1–10.

    Article  Google Scholar 

  25. Saraiva VB, de Souza Silva L, Ferreira-DaSilva CT, da Silva-Filho JL, Teixeira-Ferreira A, Perales J, et al. Impairment of the Plasmodium falciparum erythrocytic cycle induced by angiotensin peptides. PLoS One. 2011;6:e17174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Der Torossian Torres M, Silva AF, De Souza Silva L, De Sá Pinheiro AA, Oliveira VX. Angiotensin II restricted analogs with biological activity in the erythrocytic cycle of Plasmodium falciparum. J Pept Sci. 2014;21:24–8.

    Article  Google Scholar 

  27. Silva LS, Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. New concepts in malaria pathogenesis: the role of the renin-angiotensin system. Front Cell Infect Microbiol. 2016;5:103.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Merckx A, Nivez MP, Bouyer G, Alano P, Langsley G, Deitsch K, et al. Plasmodium falciparum regulatory subunit of cAMP-dependent PKA and anion channel conductance. PLoS Pathog. 2008;4:e19.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petersen JEV, Lavstsen T, Craig A. Breaking down brain barrier breaches in cerebral malaria. J Clin Invest. 2016;126:3725–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Abdulazeez AM, Ya’u M, Kurfi B. Association of hypertension and activity of angiotensin converting enzyme in malaria patients attending sheik muhammad Jidda General Hospital, Kano State, Nigeria. Niger J Basic Clin Sci. 2017;14:121–6.

    Article  Google Scholar 

  31. Dhangadamajhi G, Mohapatra BN, Kar SK, Ranjit M. Gene polymorphisms in angiotensin I converting enzyme (ACE I/D) and angiotensin II converting enzyme (ACE2 C>T) protect against cerebral malaria in Indian adults. Infect Genet Evol. 2010;10:337–41.

    Article  CAS  PubMed  Google Scholar 

  32. Nwokocha CR, Bafor EE, Ajayi OI, Ebeigbe AB. The malaria-high blood pressure hypothesis: revisited. Am J Hypertens. 2020;33:695–702.

    Article  CAS  PubMed  Google Scholar 

  33. Etyang AO, Wandabwa CK, Kapesa S, Muthumbi E, Odipo E, Wamukoya M, et al. Blood pressure and arterial stiffness in Kenyan adolescents with the sickle cell trait. Am J Epidemiol. 2017;187:199–205.

    Article  PubMed Central  Google Scholar 

  34. Etyang AO, Kapesa S, Med DC, Odipo E, Bauni E, Kyobutungi C, et al. Effect of previous exposure to malaria on blood pressure in Kilifi: a mendelian randomization study. J Am Hear Assoc 2019;8:e011771.

    Article  Google Scholar 

  35. Singer DRJ, Missouris CG, Jeffery S. Angiotensin-converting enzyme gene polymorphism what to do about all the confusion? Circulation. 1996;94:236–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ji LD, Li JY, Yao BB, Cai XB, Shen QJ, Xu J. Are genetic polymorphisms in the renin-angiotensin-aldosterone system associated with essential hypertension? Evidence from genome-wide association studies. J Hum Hypertens. 2017;31:695–8.

    Article  CAS  PubMed  Google Scholar 

  37. Bosso M, Thanaraj TA, Abu-Farha M, Alanbaei M, Abubaker J, Al-Mulla F. The two faces of ACE2: the role of ACE2 receptor and its polymorphisms in hypertension and COVID-19. Mol Ther Methods Clin Dev. 2020;18:321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luzzatto L. Genes expressed in red cells could shape a malaria attack. Lancet Haematol. 2018;5:e322–3.

    Article  PubMed  Google Scholar 

  39. Verdecchia P, Angeli F, Reboldi G. Does Malaria cause hypertension? Circ Res. 2016;119:7–9.

    Article  CAS  PubMed  Google Scholar 

  40. Silva LS, Peruchetti DB, Silva CTF, Ferreira-DaSilva AT, Perales J, Caruso-Neves C, et al. Interaction between bradykinin B2 and Ang-(1-7) Mas receptors regulates erythrocyte invasion by Plasmodium falciparum. Biochim Biophys Acta. 2016;1860:2438–44.

    Article  CAS  PubMed  Google Scholar 

  41. Gallego-Delgado J, Walther T, Rodriguez A. The high blood pressure-malaria protection hypothesis. Circ Res. 2016;119:1071–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eze IC, Bassa FK, Essé C, Koné S, Acka F, Laubhouet-Koffi V, et al. Epidemiological links between malaria parasitaemia and hypertension: findings from a population-based survey in rural Côte d’Ivoire. J Hypertens. 2019;37:1384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Volpe M, Battistoni A. An evolutionary rebus: the complex link between malaria and hypertension. J Hypertens. 2019;37:1344–6.

    Article  CAS  PubMed  Google Scholar 

  44. Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell. 2021;34:734–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director ICMR-National Institute of Malaria Research for encouragement and support in preparing the manuscript. We thank the Department of Biotechnology, Kumaun University for the academic support of the Ph.D. program to AT.

Funding

This work was supported by the Indian Council of Medical Research (ICMR), New Delhi [Grant no. fellowship/42/2018-ECD-II], to AD and the Council of Scientific and Industrial Research (CSIR), New Delhi [Grant No.: 09/905 (0017) /2017-EMR-I] to AT.

Author information

Authors and Affiliations

Authors

Contributions

AD and AT wrote the first draft, analyzed the data, and edited the manuscript. VP helped in academic support and edited the manuscript. AT and AS made the table. AD and AS made the figures. AS conceived the idea, designed the project critically reviewed, edited, and finalized the manuscript; All authors read and approved the final manuscript to be published.

Corresponding author

Correspondence to Abhinav Sinha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De, A., Tiwari, A., Pande, V. et al. Evolutionary trilogy of malaria, angiotensin II and hypertension: deeper insights and the way forward. J Hum Hypertens 36, 344–351 (2022). https://doi.org/10.1038/s41371-021-00599-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-021-00599-0

This article is cited by

Search

Quick links