Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Brainstem network connectivity with mid-anterior insula predicts lower systolic blood pressure at rest in older adults with hypertension

Abstract

Central regulation of heart rate and blood pressure provides the bases for a neurogenic mechanism of hypertension (HTN). Post menopause (PM) age coincides with changes in resting state functional brain connectivity (rsFC) as well as increased risk for HTN. Whether the neural networks underpinning cardioautonomic control differ between PM women with and without HTN is unclear. Phenotypic and functional neuroimaging data from the Nathan Kline Institute was first evaluated for group differences in intrinsic network connectivity between 22 HTN post menopausal women and 22 normotensive controls. Intrinsic rsFC of the midbrain-brainstem-cerebellar network with bilateral mid-anterior insula was lower in women with HTN (FWE-corrected, p < 0.05). Z-scores indicating rsFC of these regions were extracted from the 44 PM women and a cohort of 111 adults, not presenting with metabolic or neurodegenerative disease, and compared to in-office systolic and diastolic blood pressure. Lower rsFC of the left (r  = −0.17, p = 0.019) and right (r  = −0.14, p = 0.048) mid-anterior insula with brainstem nuclei was associated with higher systolic blood pressure in the combined sample. The magnitude of this effect in men and women of post menopausal age supports a neurogenic mechanism for blood pressure regulation in older adults with HTN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intrinsic resting state networks (RSN).
Fig. 2: Between group comparison of IC09 (midbrain-cerebellar network).
Fig. 3: Scatter plot comparing systolic blood pressure (X-axis) and left insula connectivity with the midbrain-brainstem-cerebellar network.
Fig. 4: Scatter plot comparing diastolic blood pressure (X-axis) and right insula connectivity with the midbrain-brainstem-cerebellar network.

Similar content being viewed by others

References

  1. Mann SJ. Neurogenic hypertension: pathophysiology, diagnosis and management. Clin Autonomic Res. 2018;28:363–74.

    Article  Google Scholar 

  2. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7:335–46.

    Article  CAS  PubMed  Google Scholar 

  3. Wang S, Ranson S. Descending pathways from the hypothalamus to the medulla and spinal cord. Observations on blood pressure and bladder responses. J Comp Neurol. 1939;71:457–72.

    Article  Google Scholar 

  4. Thayer JF, Lane RD. Claude Bernard and the heart–brain connection: further elaboration of a model of neurovisceral integration. Neurosci Biobehav Rev. 2009;33:81–88.

    Article  PubMed  Google Scholar 

  5. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    Article  CAS  PubMed  Google Scholar 

  6. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertension. 2010;23:1052–60.

    Article  Google Scholar 

  7. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circulation Res. 2014;114:1804–14.

    Article  CAS  PubMed  Google Scholar 

  8. Jennings JR, Zanstra Y. Is the brain the essential in hypertension? Neuroimage. 2009;47:914–21.

    Article  PubMed  Google Scholar 

  9. Matthews SC, Paulus MP, Simmons AN, Nelesen RA, Dimsdale JE. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage. 2004;22:1151–6.

    Article  PubMed  Google Scholar 

  10. Wong SW, Massé N, Kimmerly DS, Menon RS, Shoemaker JK. Ventral medial prefrontal cortex and cardiovagal control in conscious humans. Neuroimage. 2007;35:698–708.

    Article  PubMed  Google Scholar 

  11. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. In: Mayo Clinic Proceedings. vol. 68, pp. 988–1001. Elsevier; 1993.

  12. Beissner F, Meissner K, Bär K-J, Napadow V. The autonomic brain: an activation likelihood estimation meta-analysis for central processing of autonomic function. J Neurosci. 2013;33:10503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meusel L-AC, Kansal N, Tchistiakova E, Yuen W, MacIntosh BJ, Greenwood CE, et al. A systematic review of type 2 diabetes mellitus and hypertension in imaging studies of cognitive aging: time to establish new norms. Front Aging Neurosci. 2014;6:148.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Calhoun VD, Adali T, Pearlson GD, Pekar JJ. A method for making group inferences from functional MRI data using independent component analysis. Hum brain Mapp. 2001;14:140–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8:700.

    Article  CAS  PubMed  Google Scholar 

  16. Zuo X-N, Xing X-X. Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective. Neurosci Biobehav Rev. 2014;45:100–18.

    Article  PubMed  Google Scholar 

  17. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA. 2006;103:13848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci. 2009;106:13040–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Damoiseaux JS, Beckmann C, Arigita ES, Barkhof F, Scheltens P, Stam C, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2007;18:1856–64.

    Article  PubMed  Google Scholar 

  21. Pievani M, Filippini N, Van Den Heuvel MP, Cappa SF, Frisoni GB. Brain connectivity in neurodegenerative diseases—from phenotype to proteinopathy. Nat Rev Neurol. 2014;10:620.

    Article  PubMed  Google Scholar 

  22. Zang Y-F, Zuo X-N, Milham M, Hallett M. Toward a meta-analytic synthesis of the resting-state fMRI literature for clinical populations. BioMed Res Int 2015;2015.

  23. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol. 2013;34:1866–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferreira LK, Busatto GF. Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev. 2013;37:384–400.

    Article  PubMed  Google Scholar 

  25. Musen G, Jacobson AM, Bolo NR, Simonson DC, Shenton ME, McCartney RL, et al. Resting-state brain functional connectivity is altered in type 2 diabetes. Diabetes. 2012;61:2375–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen Y-C, Jiao Y, Cui Y, Shang S-A, Ding J, Feng Y et al. Aberrant brain functional connectivity related to insulin resistance in type 2 diabetes: a resting-state fMRI study. Diab Care. 2014. https://doi.org/10.2337/dc13-2127.

  27. Zhou X, Zhang J, Chen Y, Ma T, Wang Y, Wang J, et al. Aggravated cognitive and brain functional impairment in mild cognitive impairment patients with type 2 diabetes: a resting-state functional MRI study. J Alzheimer’s Dis. 2014;41:925–35.

    Article  CAS  Google Scholar 

  28. Cui Y, Jiao Y, Chen H-J, Ding J, Luo B, Peng C-Y, et al. Aberrant functional connectivity of default-mode network in type 2 diabetes patients. Eur Radiol. 2015;25:3238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Y, Lu S, Liu C, Zhang H, Zhou X, Ni C, et al. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis. Sci Rep. 2016;6:23767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Macpherson H, Formica M, Harris E, Daly RM. Brain functional alterations in type 2 diabetes–a systematic review of fMRI studies. Front Neuroendocrinol. 2017;47:34–46.

    Article  CAS  PubMed  Google Scholar 

  31. Narkiewicz K, Phillips BG, Kato M, Hering D, Bieniaszewski L, Somers VK. Gender-selective interaction between aging, blood pressure, and sympathetic nerve activity. Hypertension. 2005;45:522–5.

    Article  CAS  PubMed  Google Scholar 

  32. Hart EC, Joyner MJ, Wallin BG, Johnson CP, Curry TB, Eisenach JH, et al. Age-related differences in the sympathetic-hemodynamic balance in men. Hypertension. 2009;54:127–33.

    Article  CAS  PubMed  Google Scholar 

  33. Hart EC, Joyner MJ, Wallin BG, Charkoudian N. Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors. J Physiol. 2012;590:2069–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matsukawa T, Sugiyama Y, Watanabe T, Kobayashi F, Mano T. Gender difference in age-related changes in muscle sympathetic nerve activity in healthy subjects. Am J Physiol-Regulatory, Integr Comp Physiol. 1998;275:R1600–R1604.

    Article  CAS  Google Scholar 

  35. Peper JS, van den Heuvel MP, Mandl RC, Pol HEH, van Honk J. Sex steroids and connectivity in the human brain: a review of neuroimaging studies. Psychoneuroendocrinology. 2011;36:1101–13.

    Article  CAS  PubMed  Google Scholar 

  36. Nooner KB, Colcombe SJ, Tobe RH, Mennes M, Benedict MM, Moreno AL, et al. The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front Neurosci. 2012;6:152.

    Article  PubMed  PubMed Central  Google Scholar 

  37. McKinlay SM, Brambilla DJ, Posner JG. The normal menopause transition. Am J Hum Biol. 1992;4:37–46.

    Article  PubMed  Google Scholar 

  38. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.

    Article  CAS  PubMed  Google Scholar 

  39. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289:2560–71.

    Article  CAS  PubMed  Google Scholar 

  40. O’brien E, Waeber B, Parati G, Staessen J, Myers MG. Blood pressure measuring devices: recommendations of the European Society of Hypertension. BMJ. 2001;322:531–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, et al. Toward discovery science of human brain function. Proc Natl Acad Sci. 2010;107:4734–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219.

    Article  PubMed  Google Scholar 

  43. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17:825–41.

    Article  PubMed  Google Scholar 

  44. Smith SM, Zhang Y, Jenkinson M, Chen J, Matthews P, Federico A, et al. Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. Neuroimage. 2002;17:479–89.

    Article  PubMed  Google Scholar 

  45. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–54.

    Article  PubMed  Google Scholar 

  46. Van Dijk KR, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59:431–8.

    Article  PubMed  Google Scholar 

  47. Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med imaging. 2004;23:137–52.

    Article  PubMed  Google Scholar 

  48. Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE. Permutation inference for the general linear model. Neuroimage. 2014;92:381–97.

    Article  PubMed  Google Scholar 

  49. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98.

    Article  PubMed  Google Scholar 

  50. Kelly RE, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF, Morimoto SS, et al. Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods. 2010;189:233–45.

    Article  PubMed  PubMed Central  Google Scholar 

  51. van de Ven VG, Formisano E, Prvulovic D, Roeder CH, Linden DE. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Hum Brain Mapp. 2004;22:165–78.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc B. 2005;360:1001–13.

    Article  Google Scholar 

  53. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55.

    Article  CAS  PubMed  Google Scholar 

  54. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 2011;23:4022–37.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bär K-J, de la Cruz F, Schumann A, Koehler S, Sauer H, Critchley H, et al. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage. 2016;134:53–63.

    Article  PubMed  Google Scholar 

  57. Gianaros PJ, Onyewuenyi IC, Sheu LK, Christie IC, Critchley HD. Brain systems for baroreflex suppression during stress in humans. Hum Brain Mapp. 2012;33:1700–16.

    Article  PubMed  Google Scholar 

  58. Cechetto DF, Chen S. Subcortical sites mediating sympathetic responses from insular cortex in rats. Am J Physiol-Regulatory, Integr Comp Physiol. 1990;258:R245–R255.

    Article  CAS  Google Scholar 

  59. Hyam JA, Kringelbach ML, Silburn PA, Aziz TZ, Green AL. The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nat Rev Neurol. 2012;8:391.

    Article  PubMed  Google Scholar 

  60. Shivkumar K, Ardell JL. Cardiac autonomic control in health and disease. J Physiol. 2016;594:3851–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lutherer L, Williams J, Everse S. Neurons of the rostral fastigial nucleus are responsive to cardiovascular and respiratory challenges. J Autonomic Nerv Syst. 1989;27:101–11.

    Article  CAS  Google Scholar 

  62. Chen C, Williams J, Lutherer L. Cerebellar lesions alter autonomic responses to transient isovolaemic changes in arterial pressure in anaesthetized cats. Clin Autonomic Res. 1994;4:263–72.

    Article  CAS  Google Scholar 

  63. Macefield VG, Henderson LA. Control of Autonomic Function: insights from neurophysiological studies in conscious animals (Including Humans):“Real-time” imaging of cortical and subcortical sites of cardiovascular control: concurrent recordings of sympathetic nerve activity and fMRI in awake subjects. J Neurophysiol. 2016;116:1199.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1:35.

    Article  PubMed  Google Scholar 

  65. Xu F, Frazier DT. Respiratory-related neurons of the fastigial nucleus in response to chemical and mechanical challenges. J Appl Physiol. 1997;82:1177–84.

    Article  CAS  PubMed  Google Scholar 

  66. Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertension. 2010;4:174–82.

    Article  Google Scholar 

  67. Butcher KS, Cechetto DF. Autonomic responses of the insular cortex in hypertensive and normotensive rats. Am J Physiol-Regulatory, Integr Comp Physiol. 1995;268:R214–R222.

    Article  CAS  Google Scholar 

  68. Oppenheimer SM, Cechetto DF. Cardiac chronotropic organization of the rat insular cortex. Brain Res. 1990;533:66–72.

    Article  CAS  PubMed  Google Scholar 

  69. Zhang Z, Oppenheimer SM. Characterization, distribution and lateralization of baroreceptor-related neurons in the rat insular cortex. Brain Res. 1997;760:243–50.

    Article  CAS  PubMed  Google Scholar 

  70. Inamasu J, Sugimoto K, Watanabe E, Kato Y, Hirose Y. Effect of insular injury on autonomic functions in patients with ruptured middle cerebral artery aneurysms. Stroke. 2013;44:3550–2.

    Article  PubMed  Google Scholar 

  71. Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B. Lateralization in autononic dysfunction in ischemic stroke involving the insular cortex. Neuroreport. 2004;15:357–61.

    Article  CAS  PubMed  Google Scholar 

  72. Hachinski VC, Oppenheimer SM, Wilson JX, Guiraudon C, Cechetto DF. Asymmetry of sympathetic consequences of experimental stroke. Arch Neurol. 1992;49:697–702.

    Article  CAS  PubMed  Google Scholar 

  73. Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004;35:2094–8.

    Article  PubMed  Google Scholar 

  74. Kimmerly DS, O’Leary DD, Menon RS, Gati JS, Shoemaker JK. Cortical regions associated with autonomic cardiovascular regulation during lower body negative pressure in humans. J Physiol. 2005;569:331–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Oppenheimer S, Kedem G, Martin W. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Autonomic Res. 1996;6:131–40.

    Article  CAS  Google Scholar 

  76. Critchley H, Corfield D, Chandler M, Mathias C, Dolan R. Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol. 2000;523:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42:1727–1727.

    Article  CAS  PubMed  Google Scholar 

  78. Macey PM, Wu P, Kumar R, Ogren JA, Richardson HL, Woo MA, et al. Differential responses of the insular cortex gyri to autonomic challenges. Autonomic Neurosci. 2012;168:72–81.

    Article  Google Scholar 

  79. Kim J, Suh S-i, Seo W-K, Koh S-B, Kim J. Right insular atrophy in neurocardiogenic syncope: a volumetric MRI study. Am J Neuroradiol. 2014;35:113–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci. 2015;16:55–61.

    Article  CAS  PubMed  Google Scholar 

  81. Wiebking C, Duncan NW, Tiret B, Hayes DJ, Marjaǹska M, Doyon J, et al. GABA in the insula—a predictor of the neural response to interoceptive awareness. Neuroimage. 2014;86:10–18.

    Article  CAS  PubMed  Google Scholar 

  82. Ernst J, Böker H, Hättenschwiler J, Schüpbach D, Northoff G, Seifritz E et al. The association of interoceptive awareness and alexithymia with neurotransmitter concentrations in insula and anterior cingulate. Soc Cogn Affect Neurosci. 2013. https://doi.org/10.1093/scan/nst058.

  83. Szurhaj W, Troussière A-C, Logier R, Derambure P, Tyvaert L, Semah F, et al. Ictal changes in parasympathetic tone: prediction of postictal oxygen desaturation. Neurology. 2015;85:1233–9.

    Article  CAS  PubMed  Google Scholar 

  84. Chouchou F, Bouet R, Pichot V, Catenoix H, Mauguière F, Jung J. The neural bases of ictal tachycardia in temporal lobe seizures. Clin Neurophysiol. 2017;128:1810–9.

    Article  PubMed  Google Scholar 

  85. Chouchou F, Mauguière F, Vallayer O, Catenoix H, Isnard J, Montavont A, et al. How the insula speaks to the heart: cardiac responses to insular stimulation in humans. Hum Brain Mapp. 2019;40:2611–22.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Marins FR, Limborço‐Filho M, Xavier CH, Biancardi VC, Vaz GC, Stern JE, et al. Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clin Exp Pharmacol Physiol. 2016;43:484–93.

    Article  CAS  PubMed  Google Scholar 

  87. Yildirir A, Kabakci G, Yarali H, Aybar F, Akgul E, Bukulmez O, et al. Effects of hormone replacement therapy on heart rate variability in postmenopausal women. Ann Noninvasive Electrocardiol. 2001;6:280–4.

    Article  CAS  PubMed  Google Scholar 

  88. Rosano G, Patrizi R, Leonardo F, Ponikowski P, Collins P, Sarrel PM, et al. Effect of estrogen replacement therapy on heart rate variability and heart rate in healthy postmenopausal women. Am J Cardiol. 1997;80:815–7.

    Article  CAS  PubMed  Google Scholar 

  89. Liu C, Kuo TB, Yang CC. Effects of estrogen on gender-related autonomic differences in humans. Am J Physiol-Heart Circulatory Physiol. 2003;285:H2188–H2193.

    Article  CAS  Google Scholar 

  90. Neves V, Silva de Sá M, Gallo L Jr, Catai A, Martins L, Crescêncio J, et al. Autonomic modulation of heart rate of young and postmenopausal women undergoing estrogen therapy. Braz J Med Biol Res. 2007;40:491–9.

    Article  CAS  PubMed  Google Scholar 

  91. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW. Estrogen receptor α mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Investig. 1999;103:401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mendelsohn ME, Karas RH. The protective effects of estrogen on the cardiovascular system. N. Engl J Med. 1999;340:1801–11.

    Article  CAS  PubMed  Google Scholar 

  93. Collins O, Dillon S, Finucane C, Lawlor B, Kenny RA. Parasympathetic autonomic dysfunction is common in mild cognitive impairment. Neurobiol Aging. 2012;33:2324–33.

    Article  PubMed  Google Scholar 

  94. Khalsa SS, Rudrauf D, Tranel D. Interoceptive awareness declines with age. Psychophysiology. 2009;46:1130–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zaki J, Davis JI, Ochsner KN. Overlapping activity in anterior insula during interoception and emotional experience. Neuroimage. 2012;62:493–9.

    Article  PubMed  Google Scholar 

  96. Craig AD. How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59–70.

    Article  CAS  PubMed  Google Scholar 

  97. Yoris A, Abrevaya S, Esteves S, Salamone P, Lori N, Martorell M, et al. Multilevel convergence of interoceptive impairments in hypertension: new evidence of disrupted body–brain interactions. Hum brain Mapp. 2018;39:1563–81.

    Article  PubMed  Google Scholar 

  98. Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline J-B. Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage. 2007;35:105–20.

    Article  PubMed  Google Scholar 

  99. Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: recent developments and clinical implications. Clin Autonomic Res. 2019;29:555–66.

    Article  Google Scholar 

  100. Zheng Y, Zhang J, Wang Y, Wang Y, Lan Y, Qu S et al. Acupuncture decreases blood pressure related to hypothalamus functional connectivity with frontal lobe, cerebellum, and insula: a study of instantaneous and short-term acupuncture treatment in essential hypertension. Evid Based Complementary Alternat Med. 2016;2016:1–10.

    CAS  Google Scholar 

  101. Chen H, Dai J, Zhang X, Wang K, Huang S, Cao Q, et al. Hypothalamus-related resting brain network underlying short-term acupuncture treatment in primary hypertension. Evid Based Complementary Alternat Med. 2013;2013:1–9.

    Google Scholar 

Download references

Acknowledgements

RCM supported by K01-HL13972.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. McIntosh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McIntosh, R.C., Lobo, J.D., Yang, A. et al. Brainstem network connectivity with mid-anterior insula predicts lower systolic blood pressure at rest in older adults with hypertension. J Hum Hypertens 35, 1098–1108 (2021). https://doi.org/10.1038/s41371-020-00476-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-020-00476-2

This article is cited by

Search

Quick links