The association between metabolic syndrome components and the development of atherosclerosis


Metabolic syndrome (MetS) is a collection of pathological conditions associated with metabolic, pro-inflammatory, and prothrombotic states. MetS plays an essential role in the atherosclerotic process with associated clustering of risk factors which can increase the risk of atherogenic damage. There is an association between MetS components and the progression of atherosclerosis, which is the leading cause of cardiovascular deaths. This review was undertaken to assess the potential role of metabolic syndrome components, including oxidative stress, hypertension, hyperglycaemia and insulin resistance, obesity, dyslipidemia, chronic inflammation, physical inactivity, and atherogenic diet in the progression of atherosclerosis based on existing research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    World Health Organization. World health statistics 2016: monitoring health for SDGs sustainable development goals. World Health Organization; 2016.

  2. 2.

    Robbie L, Libby P. Inflammation and atherothrombosis. Ann New Y Acad Sci. 2001;947:167–80.

    CAS  Google Scholar 

  3. 3.

    Eckel RH, Barouch WW, Ershow AG. Report of the National Heart, Lung, and Blood Institute-National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the pathophysiology of obesity-associated cardiovascular disease. Circulation. 2002;105:2923–8.

    PubMed  Google Scholar 

  4. 4.

    Zaman A, Helft G, Worthley S, Badimon J. The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis. 2000;149:251–66.

    CAS  PubMed  Google Scholar 

  5. 5.

    Wissler RW. Development of the atherosclerotic plaque. Hosp Pract. 1973;8:61–72.

    Google Scholar 

  6. 6.

    Paoletti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis. Vasc Health Risk Manag. 2006;2:145.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860.

    CAS  PubMed  Google Scholar 

  8. 8.

    McNeill AM, Rosamond WD, Girman CJ, Golden SH, Schmidt MI, East HE, et al. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care. 2005;28:385–90.

    PubMed  Google Scholar 

  9. 9.

    Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110:1245–50.

    PubMed  Google Scholar 

  10. 10.

    Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008;28:629–36.

    CAS  PubMed  Google Scholar 

  11. 11.

    Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109:433–8.

    PubMed  Google Scholar 

  12. 12.

    Roberts CK, Sindhu KK. Oxidative stress and metabolic syndrome. Life Sci. 2009;84:705–12.

    CAS  PubMed  Google Scholar 

  13. 13.

    Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III-27–III-32.

    Google Scholar 

  14. 14.

    Betteridge DJ. What is oxidative stress? Metab Clin Exp. 2000;49:3–8.

    CAS  PubMed  Google Scholar 

  15. 15.

    Sies H. What is oxidative stress? InOxidative stress and vascular disease. p. 1–8. Springer, Boston, MA. 2000.

    Google Scholar 

  16. 16.

    Bandyopadhyay U, Das D, Banerjee RK. Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci. 1999;77:658–66.

  17. 17.

    Pignatelli P, Pulcinelli FM, Lenti L, Gazzaniga PP, Violi F. Hydrogen peroxide is involved in collagen-induced platelet activation. Blood. 1998;91:484–90.

    CAS  PubMed  Google Scholar 

  18. 18.

    Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–12.

    CAS  PubMed  Google Scholar 

  19. 19.

    Jiang Z-Y, Woollard AC, Wolff SP. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990;268:69–71.

    CAS  PubMed  Google Scholar 

  20. 20.

    Hogg N, Kalyanaraman B, Joseph J, Struck A, Parthasarathy S. Inhibition of low‐density lipoprotein oxidation by nitric oxide Potential role in atherogenesis. FEBS Lett. 1993;334:170–4.

    CAS  PubMed  Google Scholar 

  21. 21.

    Tsai EC, Hirsch IB, Brunzell JD, Chait A. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes. 1994;43:1010–4.

    CAS  PubMed  Google Scholar 

  22. 22.

    Kawamura M, Heinecke JW, Chait A. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. J Clin Investig. 1994;94:771–8.

    CAS  PubMed  Google Scholar 

  23. 23.

    McCarthy AD, Etcheverry SB, Cortizo AM. Effect of advanced glycation endproducts on the secretion of insulin-like growth factor-I and its binding proteins: role in osteoblast development. Acta Diabetol. 2001;38:113–22.

    CAS  PubMed  Google Scholar 

  24. 24.

    Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications. Diabetes. 1999;48:1–2.

    CAS  PubMed  Google Scholar 

  25. 25.

    Vlassara H. Recent progress in advanced glycation end products and diabetic complications. Diabetes. 1997;46:S19-S.

    Google Scholar 

  26. 26.

    Kempe S, Kestler H, Lasar A, Wirth T. NF-κB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005;33:5308–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wu X, Muzny DM, Chi Lee C, Thomas Caskey C. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34:78–84.

    CAS  PubMed  Google Scholar 

  28. 28.

    Glantzounis G, Tsimoyiannis E, Kappas A, Galaris D. Uric acid and oxidative stress. Curr Pharm Des. 2005;11:4145–51.

    CAS  PubMed  Google Scholar 

  29. 29.

    Gagliardi AC, Miname MH, Santos RD. Uric acid: a marker of increased cardiovascular risk. Atherosclerosis. 2009;202:11–7.

    CAS  PubMed  Google Scholar 

  30. 30.

    Alderman M, Aiyer KJ. Uric acid: role in cardiovascular disease and effects of losartan. Curr Med Res Opin. 2004;20:369–79.

    CAS  PubMed  Google Scholar 

  31. 31.

    Chen L-y, Zhuu W-h, Chen Z-w, Dai H-l, Ren J-j, Chen J-h, et al. Relationship between hyperuricemia and metabolic syndrome. J Zhejiang Univ Sci B. 2007;8:593.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hozawa A, Folsom AR, Ibrahim H, Nieto FJ, Rosamond WD, Shahar E. Serum uric acid and risk of ischemic stroke: the ARIC Study. Atherosclerosis. 2006;187:401–7.

    CAS  PubMed  Google Scholar 

  33. 33.

    Alvarez-Lario B, Macarron-Vicente J. Is there anything good in uric acid? QJM Int J Med. 2011;104:1015–24.

    CAS  Google Scholar 

  34. 34.

    Nieto FJ, Iribarren C, Gross MD, Comstock GW, Cutler RG. Uric acid and serum antioxidant capacity: a reaction to atherosclerosis? Atherosclerosis. 2000;148:131–9.

    CAS  PubMed  Google Scholar 

  35. 35.

    Tsouli SG, Liberopoulos EN, Mikhailidis DP, Athyros VG, Elisaf MS. Elevated serum uric acid levels in metabolic syndrome: an active component or an innocent bystander? Metabolism. 2006;55:1293–301.

    CAS  PubMed  Google Scholar 

  36. 36.

    BAGNATI M, Perugini C, Cristiana C, Bordone R, Albano E, Bellomo G. When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochemical J. 1999;340:143–52.

    CAS  Google Scholar 

  37. 37.

    Patterson RA, Horsley ET, Leake DS. Prooxidant and antioxidant properties of human serum ultrafiltrates toward LDL important role of uric acid. J Lipid Res. 2003;44:512–21.

    CAS  PubMed  Google Scholar 

  38. 38.

    Yoo TW, Sung KC, Shin HS, Kim BJ, Kim BS, Kang JH, et al. Relationship between serum uric acid concentration and insulin resistance and metabolic syndrome. Circulation J. 2005;69:928–33.

    CAS  Google Scholar 

  39. 39.

    Buettner HJ, Mueller C, Gick M, Ferenc M, Allgeier J, Comberg T, et al. The impact of obesity on mortality in UA/non-ST-segment elevation myocardial infarction. Eur Heart J. 2007;28:1694–701.

    PubMed  Google Scholar 

  40. 40.

    Battelli MG, Bolognesi A, Polito L. Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta. 2014;1842:1502–17.

    CAS  PubMed  Google Scholar 

  41. 41.

    Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol. 2004;555:589–606.

    CAS  PubMed  Google Scholar 

  42. 42.

    Choi Y-J, Yoon Y, Lee K-Y, Hien TT, Kang KW, Kim K-C, et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J. 2014;28:3197–204.

    CAS  PubMed  Google Scholar 

  43. 43.

    Zharikov S, Krotova K, Hu H, Baylis C, Johnson RJ, Block ER, et al. Uric acid decreases NO production and increases arginase activity in cultured pulmonary artery endothelial cells. Am J Physiol Cell Physiol. 2008;295:C1183–C90.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A. The relationships among hyperuricemia, endothelial dysfunction, and cardiovascular diseases: molecular mechanisms and clinical implications. J Cardiol. 2012;59:235–42.

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ruggiero C, Cherubini A, Ble A, Bos AJ, Maggio M, Dixit VD, et al. Uric acid and inflammatory markers. Eur Heart J. 2006;27:1174–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lyngdoh T, Marques-Vidal P, Paccaud F, Preisig M, Waeber G, Bochud M, et al. Elevated serum uric acid is associated with high circulating inflammatory cytokines in the population-based Colaus study. PloS ONE. 2011;6:e19901.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yu M-A, Sánchez-Lozada LG, Johnson RJ, Kang D-H. Oxidative stress with an activation of the renin–angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens. 2010;28:1234–42.

    PubMed  Google Scholar 

  48. 48.

    Perlstein TS, Gumieniak O, Hopkins PN, Murphey LJ, Brown NJ, Williams GH, et al. Uric acid and the state of the intrarenal renin-angiotensin system in humans. Kidney Int. 2004;66:1465–70.

    CAS  PubMed  Google Scholar 

  49. 49.

    Zhu Y, Hu Y, Huang T, Zhang Y, Li Z, Luo C, et al. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun. 2014;447:707–14.

    CAS  PubMed  Google Scholar 

  50. 50.

    Krishnan E, Pandya BJ, Chung L, Hariri A, Dabbous O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: a 15-year follow-up study. Am J Epidemiol. 2012;176:108–16.

    PubMed  Google Scholar 

  51. 51.

    Cirillo P, Sato W, Reungjui S, Heinig M, Gersch M, Sautin Y, et al. Uric acid, the metabolic syndrome, and renal disease. J Am Soc Nephrol. 2006;17:S165–S8.

    CAS  PubMed  Google Scholar 

  52. 52.

    Desideri G, Castaldo G, Lombardi A, Mussap M, Testa A, Pontremoli R, et al. Is it time to revise the normal range of serum uric acid levels? Eur Rev Med Pharmacol Sci. 2014;18:1295–306.

    CAS  PubMed  Google Scholar 

  53. 53.

    diabetes R-Gpmot. The Australian National Diabetes Strategy 2016–20; 2016

  54. 54.

    Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    CAS  PubMed  Google Scholar 

  55. 55.

    Stamler J, Vaccaro O, Neaton JD, Wentworth D, Group MRFITR. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care. 1993;16:434–44.

    CAS  PubMed  Google Scholar 

  56. 56.

    Steiner G. Dyslipoproteinemias in diabetes. Clin Investig Med. 1995;18:282–7.

    CAS  Google Scholar 

  57. 57.

    Mazzone T, Chait A, Plutzky J. Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet. 2008;371:1800–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Piga R, Naito Y, Kokura S, Handa O, Yoshikawa T. Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells. Atherosclerosis. 2007;193:328–34.

    CAS  PubMed  Google Scholar 

  59. 59.

    Ohgami N, Miyazaki A, Sakai M, Kuniyasu A, Nakayama H, Horiuchi S. Advanced glycation end products (AGE) inhibit scavenger receptor class B type I-mediated reverse cholesterol transport: a new crossroad of AGE to cholesterol metabolism. J Atheroscler Thromb. 2003;10:1–6.

    CAS  PubMed  Google Scholar 

  60. 60.

    Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.

    CAS  PubMed  Google Scholar 

  61. 61.

    Miyazaki A, Nakayama H, Horiuchi S. Scavenger receptors that recognize advanced glycation end products. Trends Cardiovasc Med. 2002;12:258–62.

    CAS  PubMed  Google Scholar 

  62. 62.

    Lillioja S, Mott DM, Spraul M, Ferraro R, Foley JE, Ravussin E, et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. New Engl J Med. 1993;329:1988–92.

    CAS  PubMed  Google Scholar 

  63. 63.

    Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85.

    CAS  PubMed  Google Scholar 

  64. 64.

    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799.

    CAS  PubMed  Google Scholar 

  65. 65.

    Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    CAS  PubMed  Google Scholar 

  66. 66.

    Van Gaal LF, Mertens IL, Christophe E. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875.

    PubMed  Google Scholar 

  67. 67.

    Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Investig. 2006;116:1784–92.

    CAS  PubMed  Google Scholar 

  68. 68.

    Murea M, Ma L, Freedman BI. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev Diabet Stud. 2012;9:6.

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Gil-Campos M, Cañete R, Gil A. Adiponectin, the missing link in insulin resistance and obesity. Clin Nutr. 2004;23:963–74.

    CAS  PubMed  Google Scholar 

  70. 70.

    Hattori S, Hattori Y, Kasai K. Hypoadiponectinemia is caused by chronic blockade of nitric oxide synthesis in rats. Metabolism. 2005;54:482–7.

    CAS  PubMed  Google Scholar 

  71. 71.

    Di Gregorio GB, Yao-Borengasser A, Rasouli N, Varma V, Lu T, Miles LM, et al. Expression of CD68 and macrophage chemoattractant protein-1 genes in human adipose and muscle tissues: association with cytokine expression, insulin resistance, and reduction by pioglitazone. Diabetes. 2005;54:2305–13.

    PubMed  Google Scholar 

  72. 72.

    Kolak M, Westerbacka J, Velagapudi VR, Wågsäter D, Yetukuri L, Makkonen J, et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 2007;56:1960–8.

    CAS  PubMed  Google Scholar 

  73. 73.

    Genest JJ. Dyslipidemia and coronary artery disease. Can J Cardiol. 2000;16:3A–4A.

    PubMed  Google Scholar 

  74. 74.

    Ninomiya JK, L’italien G, Criqui MH, Whyte JL, Gamst A, Chen RS. Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation. 2004;109:42–6.

    PubMed  Google Scholar 

  75. 75.

    Ross R. Atherosclerosis—an inflammatory disease. New Engl J Med. 1999;340:115–26.

    CAS  PubMed  Google Scholar 

  76. 76.

    Leitinger N. Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr Opin Lipidol. 2003;14:421–30.

    CAS  PubMed  Google Scholar 

  77. 77.

    Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, et al. Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and-resistant regions of human vasculature. Proc Natl Acad Sci. 2004;101:14871–6.

    CAS  PubMed  Google Scholar 

  78. 78.

    Goldberg IJ. Diabetic dyslipidemia: causes and consequences. J Clin Endocrinol Metab. 2001;86:965–71.

    CAS  PubMed  Google Scholar 

  79. 79.

    van Diepen JA, Berbée JF, Havekes LM, Rensen PC. Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis. 2013;228:306–15.

    PubMed  Google Scholar 

  80. 80.

    Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res. 2009;50 Suppl:S376–81.

    PubMed  Google Scholar 

  81. 81.

    Garcia-Gonzalez V, Delgado-Coello B, Perez-Torres A, Mas-Oliva J. Reality of a vaccine in the prevention and treatment of atherosclerosis. Arch Med Res. 2015;46:427–37.

    CAS  PubMed  Google Scholar 

  82. 82.

    Boisvert WA. Modulation of atherogenesis by chemokines. Trends Cardiovasc Med. 2004;14:161–5.

    CAS  PubMed  Google Scholar 

  83. 83.

    Rodríguez-Rodríguez E, López-Plaza B, López-Sobaler A, Ortega R. Prevalencia de sobrepeso y obesidad en adultos españoles. Nutr Hosp. 2011;26:355–63.

    PubMed  Google Scholar 

  84. 84.

    Yeh ET, Willerson JT. Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation. 2003;107:370–1.

    PubMed  Google Scholar 

  85. 85.

    Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, et al. Plasma concentration of C-reactive protein and risk of ischemic stroke and transient ischemic attack The Framingham Study. Stroke. 2001;32:2575–9.

    CAS  PubMed  Google Scholar 

  86. 86.

    Mazidi M, Toth PP, Banach M. C-reactive protein is associated with prevalence of the metabolic syndrome, hypertension, and diabetes mellitus in US adults. Angiology. 2018;69:438–42.

    CAS  PubMed  Google Scholar 

  87. 87.

    Tonet AC, Karnikowski M, Moraes CF, Gomes L, Karnikowski MGdO, Cordova C, et al. Association between the-174 G/C promoter polymorphism of the interleukin-6 gene and cardiovascular disease risk factors in Brazilian older women. Braz J Med Biol Res. 2008;41:47–53.

    CAS  PubMed  Google Scholar 

  88. 88.

    Ruggiero C, Cherubini A, Miller E, Maggio M, Najjar SS, Lauretani F, et al. Usefulness of uric acid to predict changes in C-reactive protein and interleukin-6 in 3-year period in Italians aged 21 to 98 years. Am J Cardiol. 2007;100:115–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Ramos AM, Pellanda LC, Gus I, Portal VL. Inflammatory markers of cardiovascular disease in the elderly. Arquivos Bras Cardiol. 2009;92:233–40.

    CAS  Google Scholar 

  90. 90.

    Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease. Circulation. 2006;113:1708–14.

    PubMed  Google Scholar 

  91. 91.

    Barylski M, Kowalczyk E, Banach M, Ciecwierz J, Pawlicki L, Kowalski J. Plasma total antioxidant activity in comparison with plasma NO and VEGF levels in patients with metabolic syndrome. Angiology. 2009;60:87–92.

    CAS  PubMed  Google Scholar 

  92. 92.

    Reilly MP, Rohatgi A, McMahon K, Wolfe ML, Pinto SC, Rhodes T, et al. Plasma cytokines, metabolic syndrome, and atherosclerosis in humans. J Investig Med. 2007;55:26–35.

    CAS  PubMed  Google Scholar 

  93. 93.

    Wagner DD, Burger PC. Platelets in inflammation and thrombosis. Arterioscler Thromb Vasc Biol. 2003;23:2131–7.

    CAS  PubMed  Google Scholar 

  94. 94.

    Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002;196:887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    Eriksson EE, Xie X, Werr J, Thoren P, Lindbom L. Importance of primary capture and l-selectin–dependent secondary capture in leukocyte accumulation in inflammation and atherosclerosis in vivo. J Exp Med. 2001;194:205–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Frenette PS, Johnson RC, Hynes RO, Wagner DD. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci. 1995;92:7450–4.

    CAS  PubMed  Google Scholar 

  97. 97.

    Freedman JE. Oxidative stress and platelets. Arterioscler thromb Vasc Biol. 2008;28:s11–s6.

    CAS  PubMed  Google Scholar 

  98. 98.

    Brass LF. Thrombin and platelet activation. Chest. 2003;124:18S–25S.

    CAS  PubMed  Google Scholar 

  99. 99.

    Radomski M, Palmer R, Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;330:1057–8.

    Google Scholar 

  100. 100.

    De Graaf J, Banga J, Moncada S, Palmer R, de Groot P, Sixma J. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992;85:2284–90.

    PubMed  Google Scholar 

  101. 101.

    Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circulation J. 2009;73:411–8.

    CAS  Google Scholar 

  102. 102.

    Mulè G, Calcaterra I, Nardi E, Cerasola G, Cottone S. Metabolic syndrome in hypertensive patients: an unholy alliance. World J Cardiol. 2014;6:890.

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Carethers M, Blanchette PL. Pathophysiology of hypertension. Clin Geriatr Med. 1989;5:657–74.

    CAS  PubMed  Google Scholar 

  104. 104.

    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Investig. 2017;114:1752–61.

    Google Scholar 

  105. 105.

    Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 2003;290:2945–51.

    CAS  PubMed  Google Scholar 

  106. 106.

    Zinman B, Hanley AJ, Harris SB, Kwan J, Fantus IG. Circulating tumor necrosis factor-α concentrations in a native Canadian population with high rates of type 2 diabetes mellitus. J Clin Endocrinol Metab. 1999;84:272–8.

    CAS  PubMed  Google Scholar 

  107. 107.

    Dörffel Y, Lätsch C, Stuhlmüller B, Schreiber S, Scholze S, Burmester GR, et al. Preactivated peripheral blood monocytes in patients with essential hypertension. Hypertension. 1999;34:113–7.

    PubMed  Google Scholar 

  108. 108.

    Masaoki T, Norio I, Katsutoshi Y, Masako Y, Remiko O, Hiroshi O. Interleukin-6 as a mediator responsible for inflammation-induced increase in plasma angiotensinogen. Biochemical Pharmacol. 1993;45:201–6.

    Google Scholar 

  109. 109.

    Formiguera X, Cantón A. Obesity: epidemiology and clinical aspects. Best Pract Res Clin Gastroenterol. 2004;18:1125–46.

    PubMed  Google Scholar 

  110. 110.

    Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88.

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9:191–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    World Health Organization. Prevention of blindness from diabetes mellitus: report of a WHO consultation in Geneva, Switzerland, 9-11 November 2005. World Health Organization; 2006.

  113. 113.

    Williams CM, Lovegrove JA, Griffin BA. Dietary patterns and cardiovascular disease. Proceedings of the Nutrition Society. 2013;72:407–11.

    CAS  PubMed  Google Scholar 

  114. 114.

    Forum NO. State of the Nation’s Waistline report 2015; 2015.

  115. 115.

    Yusuf S, Hawken S, Ôunpuu S, Bautista L, Franzosi MG, Commerford P, et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet. 2005;366:1640–9.

    PubMed  Google Scholar 

  116. 116.

    De Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J. 2007;28:850–6.

    PubMed  Google Scholar 

  117. 117.

    Collaboration PS. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Google Scholar 

  118. 118.

    Thompson PD, Buchner D, Piña IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107:3109–16.

    PubMed  Google Scholar 

  119. 119.

    Active SAS. Start active, stay active: a report on physical activity from the four home countries’ Chief Medical Officers. United Kingdom: Active SAS; 2011.

  120. 120.

    Barnes J, Behrens TK, Benden ME, Biddle S, Bond D, Brassard P, et al. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.

    Google Scholar 

  121. 121.

    Pate RR, O’neill JR, Lobelo F. The evolving definition of “sedentary”. Exerc Sport Sci Rev. 2008;36:173–8.

    PubMed  PubMed Central  Google Scholar 

  122. 122.

    Clark B, Sugiyama T. Prevalence, trends, and correlates of sedentary behavior. In: Physical activity, exercise, sedentary behavior and health. Springer, Tokyo; 2015. p. 79–90.

    Google Scholar 

  123. 123.

    Piercy KL, Troiano RP. Physical activity guidelines for Americans from the US Department of Health and Human Services: cardiovascular benefits and recommendations. Circulation: Cardiovascular Quality and Outcomes. 2018;11:e005263.

  124. 124.

    Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299:853–5.

    CAS  PubMed  Google Scholar 

  125. 125.

    Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2:1143–211.

    PubMed  PubMed Central  Google Scholar 

  126. 126.

    Thosar SS, Johnson BD, Johnston JD, Wallace JP. Sitting and endothelial dysfunction: the role of shear stress. Med Sci Monit. 2012;18:RA173.

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Johnson BD, Mather KJ, Wallace JP. Mechanotransduction of shear in the endothelium: basic studies and clinical implications. Vasc Med. 2011;16:365–77.

    PubMed  Google Scholar 

  128. 128.

    Singh U, Jialal I. Oxidative stress and atherosclerosis. Pathophysiology. 2006;13:129–42.

    CAS  PubMed  Google Scholar 

  129. 129.

    Nestel P, Clifton P, Colquhoun D, Noakes M, Mori TA, Sullivan D, et al. Indications for omega-3 long chain polyunsaturated fatty acid in the prevention and treatment of cardiovascular disease. Heart Lung Circ. 2015;24:769–79.

    PubMed  Google Scholar 

  130. 130.

    Collins CBT, Rollo M. Dietary patterns and cardiovascular disease outcomes. University of Newcastle (for the National Heart Foundation of Australia); 2017.

  131. 131.

    Mente A, de Koning L, Shannon HS, Anand SS. A systematic review of the evidence supporting a causal link between dietary factors and coronary heart disease. Arch Intern Med. 2009;169:659–69.

    CAS  PubMed  Google Scholar 

  132. 132.

    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: Heart Disease and Stroke Statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:447.

    PubMed  Google Scholar 

  133. 133.

    Mazidi M, Shivappa N, Wirth MD, Hebert JR, Mikhailidis DP, Kengne AP, et al. Dietary inflammatory index and cardiometabolic risk in US adults. Atherosclerosis. 2018;276:23–7.

    CAS  PubMed  Google Scholar 

  134. 134.

    Westman EC, Feinman RD, Mavropoulos JC, Vernon MC, Volek JS, Wortman JA, et al. Low-carbohydrate nutrition and metabolism. Am J Clin Nutr. 2007;86:276–84.

    CAS  PubMed  Google Scholar 

  135. 135.

    Westman EC, Yancy WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metab. 2008;5:1.

    Google Scholar 

  136. 136.

    Haimoto H, Iwata M, Wakai K, Umegaki H. Long-term effects of a diet loosely restricting carbohydrates on HbA1c levels, BMI and tapering of sulfonylureas in type 2 diabetes: a 2-year follow-up study. Diabetes Res Clin Pract. 2008;79:350–6.

    CAS  PubMed  Google Scholar 

  137. 137.

    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update a report from the American Heart Association. Circulation. 2016;133:e38–e48.

    PubMed  Google Scholar 

  138. 138.

    Salas-Salvadó J, Bulló M, Estruch R, Ros E, Covas M-I, Ibarrola-Jurado N, et al. Prevention of Diabetes With Mediterranean DietsA Subgroup Analysis of a Randomized Trial. Ann Intern Med. 2014;160:1–10.

    PubMed  Google Scholar 

  139. 139.

    WHO. Physical activity fact sheet. WHO; 2016. http://www.whoint/mediacentre/factsheets/fs385/en/ (2016). Accessed 29 Jun 2016.

  140. 140.

    Grundy SM. Metabolic syndrome: a multiplex cardiovascular risk factor. J Clin Endocrinol Metab. 2007;92:399–404.

    CAS  PubMed  Google Scholar 

  141. 141.

    Stone NJ, Saxon D. Approach to treatment of the patient with metabolic syndrome: lifestyle therapy. Am J Cardiol. 2005;96:15–21.

    Google Scholar 

  142. 142.

    Zheng S, Lubin B, Au R, Murabito JM, Benjamin EJ, Shwartz M. Advantages of continuous-valued risk scores for predicting long-term costs: the framingham coronary heart disease 10-year risk score. Adv Geriatr Med Res. 2019;1.

  143. 143.

    Ertek S, Banach M. Editorial (Thematic issue: the changing face of metabolic syndrome and its components in the light of current knowledge). Curr Vasc Pharmacol. 2014;12:549–52.

    CAS  PubMed  Google Scholar 

Download references


The authors would like to thank Anne Stuart for proofreading the article.

Author information




AA conceived the presented idea, developed the theory, conducted the literature search, and wrote the paper. RRM and IS provided feedback on the paper.

Corresponding author

Correspondence to Anahita Aboonabi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aboonabi, A., Meyer, R.R. & Singh, I. The association between metabolic syndrome components and the development of atherosclerosis. J Hum Hypertens 33, 844–855 (2019).

Download citation

Further reading


Quick links