Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Effects of anti-hypertensive treatment on major cardiovascular events in populations within prehypertensive levels: a systematic review and meta-analysis

Abstract

Uncertainties still remain in terms of the efficacy of anti-hypertensive treatment on the risk of major cardiovascular (CV) events within prehypertensive levels. This review aims to assess the efficacy and safety of anti-hypertensives on the CV risks in populations within prehypertensive levels. Randomized controlled trials (RCTs) concerning active treatment vs placebo in populations within prehypertensive levels were identified through electronic database and manual search. Outcomes included the first co-primary outcomes, stroke, heart failure (HF), myocardial infarction (MI), all-cause mortality, and cardiovascular mortality. The first co-primary outcomes were defined as composite cardiovascular disease (CVD) events in the included studies. A total of 29 RCTs involving 127,641 participants were identified. Pooled analysis showed active treatment was associated with a significant 7% reduction in risk of the first co-primary outcomes, 14% in stroke, and 10% in HF as compared to placebo (0.86, 0.77–0.96; 0.93, 0.89–0.98; and 0.90, 0.83–0.97). However, there were no significant reductions in risk of MI, all-cause mortality, and cardiovascular mortality. A significant reduction in risk of the first co-primary outcomes was observed in subpopulations with systolic blood pressure (SBP) 130–139 mmHg (0.94, 0.89–0.99) or prior CVDs (0.88, 0.82–0.94). Meta-regression analyses showed no significant relative risk reductions proportional to the magnitude of the mean baseline BP, mean on-treatment BP, the mean absolute change in BP, the proportion of patients with hypertension, and mean age. In summary, anti-hypertensive treatment has beneficial cardiovascular effects in populations within prehypertensive levels, especially in subpopulations with SBP 130–139 mmHg or prior CVDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO. A global brief on hypertension. Geneva: World Health Organization; 2013.

    Google Scholar 

  2. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the american heart association. Circulation. 2014;129:e28–92.

    Article  PubMed  Google Scholar 

  3. Lewington S, Clarke R, Qizilbash N, Peto R, Collins Ret. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  PubMed  Google Scholar 

  4. Staessen JA, Wang JG, Thijs L. Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens. 2003;21:1055–76.

    Article  PubMed  CAS  Google Scholar 

  5. Wang JG, Staessen JA, Franklin SS, Fagard R, Gueyffier F. Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension. 2005;45:907–13.

    Article  PubMed  CAS  Google Scholar 

  6. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA. 2003;289:2560–72.

    Article  PubMed  CAS  Google Scholar 

  7. Gupta AK, McGlone M, Greenway FL, Johnson WD. Prehypertension in disease-free adults: a marker for an adverse cardiometabolic risk profile. Hypertens Res. 2010;33:905–10.

    Article  PubMed  Google Scholar 

  8. Hsia J, Margolis KL, Eaton CB, Wenger NK, Allison M, Wu L, et al. Prehypertension and cardiovascular disease risk in the Women’s Health Initiative. Circulation. 2007;115:855–60.

    Article  PubMed  Google Scholar 

  9. Kshirsagar AV, Carpenter M, Bang H, Wyatt SB, Colindres RE. Blood pressure usually considered normal is associated with an elevated risk of cardiovascular disease. Am J Med. 2006;119:133–41.

    Article  PubMed  Google Scholar 

  10. Guo X, Zhang X, Guo L, Li Z, Zheng L, Yu S, et al. Association between pre-hypertension and cardiovascular outcomes: a systematic review and meta-analysis of prospective studies. Curr Hypertens Rep. 2013;15:703–16.

    Article  PubMed  CAS  Google Scholar 

  11. Huang Y, Wang S, Cai X, Mai W, Hu Y, Tang H, et al. Prehypertension and incidence of cardiovascular disease: a meta-analysis. BMC Med. 2013;11:177.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang Y, Cai X, Li Y, Su L, Mai W, Wang S, et al. Prehypertension and the risk of stroke: a meta-analysis. Neurology. 2014;82:1153–61.

    Article  PubMed  Google Scholar 

  13. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. Evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;2014:507–20.

    Article  CAS  Google Scholar 

  14. Remme WJ, Deckers JW, Fox KM, Ferrari R, Bertrand M, Simoons ML. Secondary prevention of coronary disease with ACE inhibition--does blood pressure reduction with perindopril explain the benefits in EUROPA? Cardiovasc Drugs Ther. 2009;23:161–70.

    Article  PubMed  Google Scholar 

  15. Pitt B, Byington RP, Furberg CD, Hunninghake DB, Mancini GB, Miller ME, et al. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. Circulation. 2000;102:1503–10.

    Article  PubMed  CAS  Google Scholar 

  16. Yusuf S, Teo K, Anderson C, Pogue J, Dyal L, Copland I, et al. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet. 2008;372:1174–83.

    Article  PubMed  CAS  Google Scholar 

  17. Teo KK, Burton JR, Buller CE, Plante S, Catellier D, Tymchak W, et al. Long-term effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: The Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). Circulation. 2000;102:1748–54.

    Article  PubMed  CAS  Google Scholar 

  18. Sipahi I, Swaminathan A, Natesan V, Debanne SM, Simon DI, Fang JC. Effect of antihypertensive therapy on incident stroke in cohorts with prehypertensive blood pressure levels: a meta-analysis of randomized controlled trials. Stroke. 2012;43:432–40.

    Article  PubMed  CAS  Google Scholar 

  19. Thompson AM, Hu T, Eshelbrenner CL, Reynolds K, He J, Bazzano LA, et al. Antihypertensive treatment and secondary prevention of cardiovascular disease events among persons without hypertension: a meta-analysis. JAMA. 2011;305:913–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  PubMed  CAS  Google Scholar 

  21. Asselbergs FW, Diercks GF, Hillege HL, van Boven AJ, Janssen WM, Voors AA, et al. Prevention of Renal and Vascular Endstage Disease Intervention Trial (PREVEND IT) investigators. Effects of fosinopril and pravastatin on cardiovascular events in subjects with microalbuminuria. Circulation. 2004;110:2809–16.

    Article  PubMed  CAS  Google Scholar 

  22. Bosch J, Yusuf S, Gerstein HC, Pogue J, Sheridan P, Dagenais G, et al. Effect of ramipril on the incidence of diabetes. N Engl J Med. 2006;355:1551–62.

    Article  PubMed  Google Scholar 

  23. Braunwald E, Domanski MJ, Fowler SE, Geller NL, Gersh BJ, Hsia J, et al. Angiotensin-converting-enzyme inhibition in stable coronary artery disease. N Engl J Med. 2004;351:2058–68.

    Article  PubMed  CAS  Google Scholar 

  24. Cleland JG, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.

    Article  PubMed  CAS  Google Scholar 

  25. Disertori M, Latini R, Barlera S, Franzosi MG, Staszewsky L, Maggioni AP, et al. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med. 2009;360:1606–17.

    Article  PubMed  Google Scholar 

  26. Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782–8.

    Article  PubMed  CAS  Google Scholar 

  27. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  PubMed  CAS  Google Scholar 

  28. McMurray JJ, Holman RR, Haffner SM, Bethel MA, Holzhauer B, Hua TA, et al. Effect of valsartan on the incidence of diabetes and cardiovascular events. N Engl J Med. 2010;362:1477–90.

    Article  PubMed  CAS  Google Scholar 

  29. Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292:2217–25.

    Article  PubMed  CAS  Google Scholar 

  30. Poole-Wilson PA, Lubsen J, Kirwan BA, et al. Effect of long-acting nifedipine on mortality and cardiovascular morbidity in patients with stable angina requiring treatment (ACTION trial): randomised controlled trial. Lancet. 2004;364:849–57.

    Article  PubMed  CAS  Google Scholar 

  31. Rouleau JL, Warnica WJ, Baillot R, Block PJ, Chocron S, Johnstone D, et al. Effects of angiotensin-converting enzyme inhibition in low-risk patients early after coronary artery bypass surgery. Circulation. 2008;117:24–31.

    Article  PubMed  CAS  Google Scholar 

  32. Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria retinopathy and strokes. Kidney Int. 2002;61:1086–97.

    Article  PubMed  Google Scholar 

  33. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet. 2003;362:777–81.

    Article  PubMed  CAS  Google Scholar 

  34. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145–53.

    Article  PubMed  CAS  Google Scholar 

  35. Marre M, Lievre M, Chatellier G, Mann JF, Passa P, Ménard J. Effects of low dose ramipril on cardiovascular and renal outcomes in patients with type 2 diabetes and raised excretion of urinary albumin: randomised, double blind, placebo controlled trial (the DIABHYCAR study). BMJ. 2004;328:495.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Arima H, Chalmers J, Woodward M, Anderson C, Rodgers A, Davis S, et al. Lower target blood pressures are safe and effective for the prevention of recurrent stroke: the PROGRESS trial. J Hypertens. 2006;24:1201–8.

    Article  PubMed  CAS  Google Scholar 

  37. PROGRESS Management Committee. Blood pressure lowering for the secondary prevention of stroke: rationale and design for PROGRESS. J Hypertens. 1996;14:S41–5. Discussion S45–6.

  38. Macmahon S, Neal B, Tzourio C, et al. Randomized trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet. 2001;358:1033–41.

    Article  Google Scholar 

  39. Patel A, MacMahon S, Chalmers J, Neal B, Woodward M, Billot L, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomized controlled trial. Lancet. 2007;370:829–40.

    Article  PubMed  CAS  Google Scholar 

  40. Rationale and design of the ADVANCE study: a randomised trial of blood pressure lowering and intensive glucose control in high-risk individuals with type 2 diabetes mellitus. Action in diabetes and vascular disease: preterax and diamicron modified-release controlled evaluation. J Hypertens. 2001;19:S21–8.

  41. Yusuf S, Diener HC, Sacco RL, Cotton D, Ounpuu S, Lawton WA, et al. Telmisartan to prevent recurrent stroke and cardiovascular events. N Engl J Med. 2008;359:1225–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Diener HC, Sacco R, Yusuf S. Rationale, design and baseline data of a randomized, double-blind, controlled trial comparing two antithrombotic regimens (a fixed-dose combination of extended-release dipyridamole plus ASA with clopidogrel) and telmisartan versus placebo in patients with strokes: the Prevention Regimen for Effectively Avoiding Second Strokes Trial (PRoFESS). Cerebrovasc Dis. 2007;23:368–80.

    Article  PubMed  CAS  Google Scholar 

  43. Liu L, Wang Z, Gong L, Zhang Y, Thijs L, Staessen JA, et al. Blood pressure reduction for the secondary prevention of stroke: a Chinese trial and a systematic review of the literature. Hypertens Res. 2009;32:1032–40.

    Article  PubMed  Google Scholar 

  44. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008;371:1839–47.

    Article  PubMed  CAS  Google Scholar 

  45. Foulquier S, Böhm M, Schmieder R, Sleight P, Teo K, Yusuf S, et al. Impact of telmisartan on cardiovascular outcome in hypertensive patients at high risk: a telmisartan randomised assessment study in ACE intolerant subjects with cardiovascular disease subanalysis. J Hypertens. 2014;32:1334–41.

    Article  PubMed  CAS  Google Scholar 

  46. Lonn EM, Bosch J, López-Jaramillo P, Zhu J, Liu L, Pais P, et al. Blood-pressure lowering in intermediate-risk persons without cardiovascular disease. N Engl J Med. 2016;374:2009–20.

    Article  PubMed  CAS  Google Scholar 

  47. Haller H, Ito S, Izzo JL Jr, Januszewicz A, Katayama S, Menne J, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17.

    Article  PubMed  CAS  Google Scholar 

  48. Yusuf S, Healey JS, Pogue J, Chrolavicius S, Flather M, Hart RG, et al. Irbesartan in patients with atrial fibrillation. N Engl J Med. 2011;364:928–38.

    Article  PubMed  CAS  Google Scholar 

  49. Parving HH, Brenner BM, McMurray JJ, de Zeeuw D, Haffner SM, Solomon SD, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  PubMed  CAS  Google Scholar 

  50. Nicholls SJ, Bakris GL, Kastelein JJ, Menon V, Williams B, Armbrecht J, et al. Effect of aliskiren on progression of coronary disease in patients with prehypertension: the AQUARIUS randomized clinical trial. JAMA. 2013;310:1135–44.

    Article  PubMed  CAS  Google Scholar 

  51. Pretorius M, Murray KT, Yu C, Byrne JG, Billings FTI, Petracek MR, et al. Angiotensin-converting enzyme inhibition or mineralocorticoid receptor blockade do not affect prevalence of atrial fibrillation in patients undergoing cardiac surgery. Crit Care Med. 2012;40:2805–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–22.

    Article  PubMed  Google Scholar 

  53. Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.

    Article  PubMed  CAS  Google Scholar 

  54. Lüders S, Schrader J, Berger J, Unger T, Zidek W, Böhm M, et al. The PHARAO study: prevention of hypertension with the angiotensin-converting enzyme inhibitor ramipril in patients with high-normal blood pressure: a prospective, randomized, controlled prevention trial of the German Hypertension League. J Hypertens. 2008;26:1487–96.

    Article  PubMed  CAS  Google Scholar 

  55. Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2:474–80.

    Article  PubMed  Google Scholar 

  56. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Jin or Dengfeng Geng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Information

Baseline characteristics of randomized controlled trials included in the systematic review

Risk of bias for the included studies

Adverse events occuring in anti-hypertensive treatment group versus placebo

Flowchart of process for selection of articles in meta-analysis

Funnel plots illustrating meta-analysis of the first coprimary outcomes

41371_2017_26_MOESM7_ESM.pdf

Subgroup analyses of the effectiveness of anti-hypertensive treatment on the first coprimary outcomes (a), stroke (b), heart failure (c), myocardial infarction (d), all-cause mortality (e) or cardiova

41371_2017_26_MOESM8_ESM.pdf

Subgroup analyses of the effectiveness of anti-hypertensive treatment on the first coprimary outcomes (a), stroke (b), heart failure (c), myocardial infarction (d), all-cause mortality (e) and cardiov

41371_2017_26_MOESM9_ESM.pdf

Subgroup analyses of the effectiveness of anti-hypertensive treatment on the first coprimary outcomes (a), stroke (b), heart failure (c), myocardial infarction (d), all-cause mortality (e) and cardiov

41371_2017_26_MOESM10_ESM.pdf

Sensitivity analysis of HBP<50% in term of the effectiveness of anti-hypertensive treatment on the first coprimary outcomes (A), stroke (B), heart failure (C), myocardial infarction (D), all-cause mor

41371_2017_26_MOESM11_ESM.pdf

Meta-regression analysis of the association between the first co-primary outcomes and mean baseline SBP (A), mean baseline DBP (B), mean final SBP (C), mean final DBP (D) or HBP% (E)

41371_2017_26_MOESM12_ESM.pdf

Adverse events occurring during anti-hypertensive treatment group versus placebo lead to discontinuation of treatment (A), hyperkalemia (B) or hypotension (C). Cl indicates confidence interval

List of generic name of anti-hypertensive drugs avaiable in the United States

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Wu, T., Zhou, S. et al. Effects of anti-hypertensive treatment on major cardiovascular events in populations within prehypertensive levels: a systematic review and meta-analysis. J Hum Hypertens 32, 94–104 (2018). https://doi.org/10.1038/s41371-017-0026-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-017-0026-x

This article is cited by

Search

Quick links