Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prenatal exposure to multiple environmental chemicals and birth size

Abstract

Background

Epidemiological studies addressing the combined effects of exposure to chemical mixtures at different stages of pregnancy on birth size are scarce.

Objective

To evaluate the association between prenatal exposure to chemical mixtures and birth size.

Methods

Our previous study repeatedly measured the urinary concentrations of 34 chemical substances among 743 pregnant women and identified three distinct clusters of exposed population and six dominant principal components of exposed chemicals in each trimester. In this study, we assessed the associations of these exposure profiles with birth weight, birth length, and ponderal index using multivariable linear regression.

Results

We found that compared with women in cluster 1 (lower urinary chemical concentrations), women in cluster 2 (higher urinary concentrations of metals, benzothiazole, benzotriazole, and some phenols), and women in cluster 3 (higher urinary concentrations of phthalates) were more likely to give birth to children with higher birth length [0.23 cm (95% CI: −0.03, 0.49); 0.29 cm (95%CI: 0.03, 0.54), respectively]. This association was observed only in 1st trimester. In addition, prenatal exposure to PC3 (higher benzophenones loading) was associated with reduced birth length across pregnancy [−0.07 cm (95% CI: −0.18, 0.03) in 1st and 2nd trimester; −0.13 cm (95% CI: −0.24, −0.03) in 3rd trimester]. Exposure to PC6 (higher thallium and BPA loading in 2nd trimester) was associated with increased birth length [0.15 cm (95% CI: 0.05, 0.26)]. Compared with other outcomes, associations of both clusters and PCs with birth length were stronger, and these associations were more pronounced in boys.

Impact Statement

Exposure to multiple chemicals simultaneously, the actual exposure situation of pregnant women, was associated with birth size, indicating that chemical mixtures should be taken more seriously when studying the health effects of pollutants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trimester-specific associations between birth size and cluster memberships (cluster 1 as reference).
Fig. 2: Trimester-specific associations between birth size and PC scores.
Fig. 3: Associations between chemical mixtures exposure and birth outcomes, evaluated by weighted quantile sum regression (WQS) models based on average concentrations over three trimesters.

Similar content being viewed by others

Data availability

Data are available from the corresponding author on reasonable request.

References

  1. Camerota M, Bollen KA. Birth weight, birth length, and gestational age as indicators of favorable fetal growth conditions in a US Sample. PLoS One. 2016;11:e0153800.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Graafmans WC, Richardus JH, Borsboom GJ, Bakketeig L, Langhoff-Roos J, Bergsjø P, et al. Birth weight and perinatal mortality: a comparison of “optimal” birth weight in seven Western European countries. Epidemiology. 2002;13:569–74.

    Article  PubMed  Google Scholar 

  3. Kato T, Yorifuji T, Inoue S, Doi H, Kawachi I. Association of birth length and risk of hospitalisation among full-term babies in Japan. Paediatr Perinat Epidemiol. 2013;27:361–70.

    Article  PubMed  Google Scholar 

  4. Hviid A, Melbye M. The impact of birth weight on infectious disease hospitalization in childhood. Am J Epidemiol. 2007;165:756–61.

    Article  PubMed  Google Scholar 

  5. Morris SS, Victora CG, Barros FC, Halpern R, Menezes AM, César JA, et al. Length and ponderal index at birth: associations with mortality, hospitalizations, development and post-natal growth in Brazilian infants. Int J Epidemiol. 1998;27:242–7.

    Article  CAS  PubMed  Google Scholar 

  6. Whincup PH, Kaye SJ, Owen CG, Huxley R, Cook DG, Anazawa S, et al. Birth Weight and Risk of Type 2 Diabetes: A Systematic Review. JAMA. 2008;300:2886–97.

    Article  CAS  PubMed  Google Scholar 

  7. Smith CJ, Ryckman KK, Barnabei VM, Howard BV, Isasi CR, Sarto GE, et al. The impact of birth weight on cardiovascular disease risk in the Women’s Health Initiative. Nutr Metab Cardiovasc Dis. 2016;26:239–45.

    Article  CAS  PubMed  Google Scholar 

  8. Dupont C, Hulot A, Jaffrezic F, Faure C, Czernichow S, di Clemente N, et al. Female ponderal index at birth and idiopathic infertility. J Dev Orig Health Dis. 2020;11:154–8.

    Article  PubMed  Google Scholar 

  9. Loaiza S, Coustasse A, Urrutia-Rojas X, Atalah E. Birth weight and obesity risk at first grade in a cohort of Chilean children. Nutr Hosp. 2011;26:214–9.

    CAS  PubMed  Google Scholar 

  10. Roje D, Banovic I, Tadin I, Vucinovic M, Capkun V, Barisic A, et al. Gestational age—the most important factor of neonatal ponderal index. Yonsei Med J. 2004;45:273–80.

    Article  PubMed  Google Scholar 

  11. Dimasuay KG, Boeuf P, Powell TL, Jansson T. Placental responses to changes in the maternal environment determine fetal growth. Front Physiol. 2016;7:12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prioreschi A, Wrottesley SV, Said-Mohamed R, Nyati L, Newell ML, Norris SA Understanding how maternal social and biological factors are related to fetal growth in an urban South African cohort. J Dev Origins Health Dis. 2020; e-pub ahead of print 2020/02/18; https://doi.org/10.1017/s2040174420000045.

  13. Zhang C, Hediger ML, Albert PS, Grewal J, Sciscione A, Grobman WA, et al. Association of maternal obesity with longitudinal ultrasonographic measures of fetal growth: findings from the NICHD fetal growth studies-singletons. JAMA Pediatr. 2018;172:24–31.

    Article  PubMed  Google Scholar 

  14. Zhong Q, Peng M, He J, Yang W, Huang F. Association of prenatal exposure to phenols and parabens with birth size: a systematic review and meta-analysis. Sci Total Environ. 2020;703:134720.

    Article  CAS  PubMed  Google Scholar 

  15. Patti MA, Henderson NB, Gajjar P, Eliot M, Jackson-Browne M, Braun JM. Gestational triclosan exposure and infant birth weight: a systematic review and meta-analysis. Environ Int. 2021;157:106854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gan H, Zhang Y, Wang YF, Tao FB, Gao H. Relationships of prenatal organophosphate ester exposure with pregnancy and birth outcomes: a systematic scoping review of epidemiological studies. Ecotoxicol Environ Saf. 2023;252:114642.

    Article  CAS  PubMed  Google Scholar 

  17. Lee YJ, Jung HW, Kim HY, Choi YJ, Lee YA. Early-life exposure to per- and poly-fluorinated alkyl substances and growth, adiposity, and puberty in children: a systematic review. Front Endocrinol. 2021;12:683297.

    Article  Google Scholar 

  18. Zhong Q, Cui Y, Wu H, Niu Q, Lu X, Wang L, et al. Association of maternal arsenic exposure with birth size: A systematic review and meta-analysis. Environ Toxicol Pharmacol. 2019;69:129–36.

    Article  CAS  PubMed  Google Scholar 

  19. Sun X, Liu W, Zhang B, Shen X, Hu C, Chen X, et al. Maternal heavy metal exposure, thyroid hormones, and birth outcomes: a prospective cohort study. J Clin Endocrinol Metab. 2019;104:5043–52.

    Article  PubMed  Google Scholar 

  20. Robledo CA, Yeung E, Mendola P, Sundaram R, Maisog J, Sweeney AM, et al. Preconception maternal and paternal exposure to persistent organic pollutants and birth size: the LIFE study. Environ Health Perspect. 2015;123:88–94.

    Article  PubMed  Google Scholar 

  21. Jamal A, Rastkari N, Dehghaniathar R, Nodehi RN, Nasseri S, Kashani H, et al. Prenatal urinary concentrations of environmental phenols and birth outcomes in the mother-infant pairs of Tehran Environment and Neurodevelopmental Disorders (TEND) cohort study. Environ Res. 2020;184:109331.

    Article  CAS  PubMed  Google Scholar 

  22. Hu J, Zhao H, Braun JM, Zheng T, Zhang B, Xia W, et al. Associations of trimester-specific exposure to bisphenols with size at birth: a Chinese prenatal cohort study. Environ Health Perspect. 2019;127:107001.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Wu C, Zheng T, Zhang B, Xia W, Peng Y, et al. Critical windows for associations between manganese exposure during pregnancy and size at birth: a longitudinal cohort study in Wuhan, China. Environ Health Perspect. 2018;126:127006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Etzel TM, Calafat AM, Ye X, Chen A, Lanphear BP, Savitz DA, et al. Urinary triclosan concentrations during pregnancy and birth outcomes. Environ Res. 2017;156:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kashino I, Sasaki S, Okada E, Matsuura H, Goudarzi H, Miyashita C, et al. Prenatal exposure to 11 perfluoroalkyl substances and fetal growth: a large-scale, prospective birth cohort study. Environ Int. 2020;136:105355.

    Article  CAS  PubMed  Google Scholar 

  26. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003-4. Environ Health Perspect. 2011;119:878–85.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Escher BI, Lamoree M, Antignac JP, Scholze M, Herzler M, Hamers T, et al. Mixture risk assessment of complex real-life mixtures-the PANORAMIX Project. Int J Environ Res public health. 2022;19:12990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shi W, Gao X, Cao Y, Chen Y, Cui Q, Deng F, et al. Personal airborne chemical exposure and epigenetic ageing biomarkers in healthy Chinese elderly individuals: Evidence from mixture approaches. Environ Int. 2022;170:107614.

    Article  CAS  PubMed  Google Scholar 

  29. Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Romano ME, et al. Exposures to chemical mixtures during pregnancy and neonatal outcomes: The HOME study. Environ Int. 2020;134:105219.

    Article  CAS  PubMed  Google Scholar 

  30. Woods MM, Lanphear BP, Braun JM, McCandless LC. Gestational exposure to endocrine disrupting chemicals in relation to infant birth weight: a Bayesian analysis of the HOME Study. Environ Health. 2017;16:115.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Govarts E, Remy S, Bruckers L, Den Hond E, Sioen I, Nelen V, et al. Combined effects of prenatal exposures to environmental chemicals on birth weight. Int J Environ Res public health. 2016;13:495.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120:1538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meeker JD, Cantonwine DE, Rivera-González LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47:3439–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen H, Zhang W, Zhou Y, Li J, Zhao H, Xu S, et al. Characteristics of exposure to multiple environmental chemicals among pregnant women in Wuhan, China. Sci Total Environ. 2021;754:142167.

    Article  CAS  PubMed  Google Scholar 

  35. Bank-Nielsen PI, Long M, Bonefeld-Jørgensen EC. Pregnant inuit women’s exposure to metals and association with fetal growth outcomes: ACCEPT 2010–2015. Int J Environ Res public health 2019;16:1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatr. 2014;168:61–67.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lenters V, Portengen L, Rignell-Hydbom A, Jonsson BA, Lindh CH, Piersma AH, et al. Prenatal phthalate, perfluoroalkyl acid, and organochlorine exposures and term birth weight in three birth cohorts: multi-pollutant models based on elastic net regression. Environ Health Perspect. 2016;124:365–72.

    Article  CAS  PubMed  Google Scholar 

  38. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116:1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Just AC, Adibi JJ, Rundle AG, Calafat AM, Camann DE, Hauser R, et al. Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York city. J Expo Sci Environ Epidemiol. 2010;20:625–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Landmann E, Reiss I, Misselwitz B, Gortner L. Ponderal index for discrimination between symmetric and asymmetric growth restriction: percentiles for neonates from 30 weeks to 43 weeks of gestation. J Matern-fetal Neonatal Med. 2006;19:157–60.

    Article  PubMed  Google Scholar 

  41. Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19:3–11.

    Article  CAS  PubMed  Google Scholar 

  42. Carrico C, Gennings C, Wheeler DC, Factor-Litvak P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J Agric Biol Environ Stat. 2015;20:100–20.

    Article  PubMed  Google Scholar 

  43. Czarnota J, Gennings C, Colt JS, De Roos AJ, Cerhan JR, Severson RK, et al. Analysis of environmental chemical mixtures and Non-Hodgkin lymphoma risk in the NCI-SEER NHL study. Environ Health Perspect. 2015;123:965–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kortenkamp A, Faust M, Scholze M, Backhaus T. Low-level exposure to multiple chemicals: reason for human health concerns? Environ Health Perspect. 2007;115:106–14.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115:98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Krause M, Frederiksen H, Sundberg K, Jorgensen FS, Jensen LN, Norgaard P, et al. Maternal exposure to UV filters: associations with maternal thyroid hormones, IGF-I/IGFBP3 and birth outcomes. Endocr Connect. 2018;7:334–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Long J, Xia W, Li J, Zhou Y, Zhao H, Wu C, et al. Maternal urinary benzophenones and infant birth size: Identifying critical windows of exposure. Chemosphere. 2019;219:655–61.

    Article  CAS  PubMed  Google Scholar 

  48. Qi J, Lai Y, Liang C, Yan S, Huang K, Pan W, et al. Prenatal thallium exposure and poor growth in early childhood: a prospective birth cohort study. Environ Int. 2019;123:224–30.

    Article  CAS  PubMed  Google Scholar 

  49. Liang CM, Ma LY, Deng F, Tao FB. [Adverse maternal and infant health effects caused by thallium exposure during pregnancy]. Zhonghua yu fang yi xue za zhi [Chin J preventive Med]. 2020;54:332–6.

    CAS  PubMed  Google Scholar 

  50. Schoenwolf GCBSBBPRF-WPHLWJ Larsen’s human embryology, 5th edn. Philadelphia, PA: Churchill Livingstone 2015.

  51. Mook-Kanamori DO, Steegers EA, Eilers PH, Raat H, Hofman A, Jaddoe VW. Risk factors and outcomes associated with first-trimester fetal growth restriction. JAMA. 2010;303:527–34.

    Article  CAS  PubMed  Google Scholar 

  52. Li W, Guo J, Wu C, Zhang J, Zhang L, Lv S, et al. Effects of prenatal exposure to five parabens on neonatal thyroid function and birth weight: Evidence from SMBCS study. Environ Res. 2020;188:109710.

    Article  CAS  PubMed  Google Scholar 

  53. Wu C, Xia W, Li Y, Li J, Zhang B, Zheng T, et al. Repeated measurements of paraben exposure during pregnancy in relation to fetal and early childhood growth. Environ Sci Technol. 2019;53:422–33.

    Article  CAS  PubMed  Google Scholar 

  54. Liu W, Luo D, Xia W, Tao Y, Wang L, Yu M, et al. Prenatal exposure to halogenated, aryl, and alkyl organophosphate esters and child neurodevelopment at two years of age. J Hazard Mater. 2021;408:124856.

    Article  CAS  PubMed  Google Scholar 

  55. Chatterjee A, Chatterji U. Arsenic abrogates the estrogen-signaling pathway in the rat uterus. Reprod Biol Endocrinol. 2010;8:80.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Watson WH, Yager JD. Arsenic: extension of its endocrine disruption potential to interference with estrogen receptor-mediated signaling. Toxicol Sci. 2007;98:1–4.

    Article  CAS  PubMed  Google Scholar 

  57. Gillies GE, McArthur S. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol Rev. 2010;62:155–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agay-Shay K, Martinez D, Valvi D, Garcia-Esteban R, Basagana X, Robinson O, et al. Exposure to endocrine-disrupting chemicals during pregnancy and weight at 7 years of age: a multi-pollutant approach. Environ Health Perspect. 2015;123:1030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study. Environ Health Perspect. 2014;122:513–20.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Park SK, Tao Y, Meeker JD, Harlow SD, Mukherjee B. Environmental risk score as a new tool to examine multi-pollutants in epidemiologic research: an example from the NHANES study using serum lipid levels. PLoS One. 2014;9:e98632.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Billionnet C, Sherrill D, Annesi-Maesano I. Estimating the health effects of exposure to multi-pollutant mixture. Ann Epidemiol. 2012;22:126–41.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff of the research hospital and all the study participants.

Funding

This work was supported by the National Natural Science Foundation of China (91743103), the National Institutes of Health (R01 ES029082) and Program for HUST Academic Frontier Youth Team (2018QYTD12).

Author information

Authors and Affiliations

Authors

Contributions

HC: Investigation, Data analysis, Writing—original Draft—review & editing; WZ: Investigation, Data analysis, Writing—original Draft—review & editing; XS: Investigation, Review & editing; YZ: Investigation, Review & editing; JL: Investigation, Review & editing; HZ: Investigation, Review & editing; SX: Resources, Review & editing; WX: Resources, Review & editing; ZC: Resources, Review & editing; YL: Conceptualization, Resources, Review & editing.

Corresponding author

Correspondence to Yuanyuan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Zhang, W., Sun, X. et al. Prenatal exposure to multiple environmental chemicals and birth size. J Expo Sci Environ Epidemiol (2023). https://doi.org/10.1038/s41370-023-00568-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41370-023-00568-4

Keywords

Search

Quick links