Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Maternal urinary phthalate metabolites are associated with lipidomic signatures among pregnant women in Puerto Rico



Phthalates have been reported to alter circulating lipid concentrations in animals, and investigation of these associations in humans will provide greater understanding of potential mechanisms for health outcomes.


To explore associations between phthalate metabolite biomarkers and lipidomic profiles among pregnant women (n = 99) in the Puerto Rico PROTECT cohort.


We measured 19 urinary phthalate metabolites during 24–28 weeks of pregnancy. Lipidomic profiles were identified from plasma samples by liquid chromatography-mass spectrometry-based shotgun lipidomics. Relationships between phthalate metabolites and lipid profiles were estimated using compound-by-compound comparisons in multiple linear regression and dimension reduction techniques. We derived sums for each lipid class and sub-class (saturated, mono-unsaturated, polyunsaturated) which were then regressed on phthalate metabolites. Associations were adjusted for false discovery.


After controlling for multiple comparisons, 33 phthalate-lipid associations were identified (False discovery rate adjusted p value < 0.05), and diacylglycerol 40:7 and plasmenyl-phosphatidylcholine 35:1 were the most strongly associated with multiple phthalate metabolites. Metabolites of di-2-ethylhexyl phthalate, bis(2-ethylhexyl) phthalate, dibutyl phthalates, and diisobutyl phthalate were associated with increased ceramides, lysophosphatidylcholines, lysophosphatidylethanolamines, and triacylglycerols, particularly those containing saturated and mono-unsaturated fatty acid chains.


Characterization of associations between lipidomic markers and phthalate metabolites during pregnancy will yield mechanistic insight for maternal and child health outcomes.


  • This study leverages emerging technology to evaluate lipidome-wide signatures of phthalate exposure during pregnancy.

  • The greatest lipid signatures of phthalate exposure were observed for diacylglycerol 40:7 and plasmenyl-phosphatidylcholine 35:1.

  • Polymerized glycerides are important for energy production and regulated through hormone signaling, while plasmenyl-phosphatidylcholines have been implicated in membrane dynamics and important for cell-to-cell signaling.

  • Characterization of these mechanisms are relevant for informing the etiology of maternal and children’s health outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Manhattan plot showing individual lipids associated with urinary phthalate metabolite concentrations.
Fig. 2: Percent change in lipid subgroup sum z-score associated with urinary phthalate metabolite concentrations.
Fig. 3: Correlation matrix between specific gravity corrected concentrations of phthalate metabolites and all lipid classes (N = 99).
Fig. 4: Percent change in lipid class sum z-score associated with urinary phthalate metabolite concentrations.

Data availability

Data utilized for this analysis can be obtained by reasonable request by contacting the corresponding author (JDM,


  1. Heudorf U, Mersch-Sundermann V, Angerer J. Phthalates: toxicology and exposure. Int J Hyg Envir Heal. 2007;210:623–34.

    Article  CAS  Google Scholar 

  2. Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Council NR. Phthalates and Cumulative Risk Assessment: The Tasks Ahead. Washington, DC: The National Academies Press; 2008

  4. Centers for Disease Control and Prevention (CDC), Fourth National Report on Human Exposure to Environmental Chemicals Updated Tables., [Accessed 2021].

  5. Mose T, Knudsen LE, Hedegaard M, Mortensen GK. Transplacental Transfer of Monomethyl Phthalate and Mono(2-ethylhexyl) Phthalate in a Human Placenta Perfusion System. Int J Toxicol. 2007;26:221–9.

    Article  CAS  PubMed  Google Scholar 

  6. Casas M, Valvi D, Ballesteros-Gomez A, Gascon M, Fernández MF, Garcia-Esteban R, et al. Exposure to Bisphenol A and Phthalates during Pregnancy and Ultrasound Measures of Fetal Growth in the INMA-Sabadell Cohort. Environ Health Persp. 2016;124:521–8.

    Article  CAS  Google Scholar 

  7. Ferguson KK, Rosen EM, Rosario Z, Feric Z, Calafat AM, McElrath TF, et al. Environmental phthalate exposure and preterm birth in the PROTECT birth cohort. Environ Int. 2019;132:105099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ferguson KK, McElrath TF, Meeker JD. Environmental phthalate exposure and preterm birth. JAMA Pediatrics. 2014;168:61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Swan SH. Environmental Phthalate Exposure and the Odds of Preterm Birth: an Important Contribution to Environmental Reproductive Epidemiology. JAMA Pediatrics. 2014;168:14–5.

    Article  PubMed  Google Scholar 

  10. Hu JM, Arbuckle TE, Janssen P, Lanphear BP, Braun JM, Platt RW, et al. Associations of prenatal urinary phthalate exposure with preterm birth: the Maternal-Infant Research on Environmental. Chem (MIREC) Study C J Public Health. 2020;111:333–41.

    Article  Google Scholar 

  11. Schmidt JS, Schaedlich K, Fiandanese N, Pocar P, Fischer B. Effects of Di(2-ethylhexyl) Phthalate (DEHP) on Female Fertility and Adipogenesis in C3H/N Mice. Environ Health Persp. 2012;120:1123–9.

    Article  CAS  Google Scholar 

  12. Philips EM, Jaddoe VWV, Trasande L. Effects of early exposure to phthalates and bisphenols on cardiometabolic outcomes in pregnancy and childhood. Reprod Toxicol. 2017;68:105–18.

    Article  CAS  PubMed  Google Scholar 

  13. Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab. 2014;19:69–75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bornehag CG, Lindh C, Reichenberg A, Wikström S, Hallerback MU, Evans SF, et al. Association of Prenatal Phthalate Exposure With Language Development in Early Childhood. JAMA Pediatrics. 2018;172:1169–76.

    Article  PubMed  Google Scholar 

  15. Gascon M, Valvi D, Forns J, Casas M, Martínez D, Júlvez J, et al. Prenatal exposure to phthalates and neuropsychological development during childhood. Int J Hyg Envir Heal. 2015;218:550–8.

    Article  CAS  Google Scholar 

  16. Engel SM, Miodovnik A, Canfield RL, Zhu C, Silva MJ, Calafat AM, et al. Prenatal Phthalate Exposure Is Associated with Childhood Behavior and Executive Functioning. Environ Health Perspect. 2010;118:565–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Klöting N, Hesselbarth N, Gericke M, Kunath A, Biemann R, Chakaroun R, et al., Di-(2-Ethylhexyl)-Phthalate (DEHP) Causes Impaired Adipocyte Function and Alters Serum Metabolites. PLoS One. 2015;10:e0143190.

  18. Bastos Sales L, van Esterik JC, Hodemaekers HM, Lamoree MH, Hamers T, van der Ven L, et al. Analysis of Lipid Metabolism, Immune Function, and Neurobehavior in Adult C57BL/6JxFVB Mice After Developmental Exposure to di (2-ethylhexyl) Phthalate. Front Endocrinol. 2018;9:684.

    Article  Google Scholar 

  19. Cao H, et al. Bis-(2-ethylhexyl) Phthalate Increases Insulin Expression and Lipid Levels in Drosophila melanogaster. Basic Clin Pharm. 2016;119:309–16.

    Article  CAS  Google Scholar 

  20. Bell FP. Effects of phthalate esters on lipid metabolism in various tissues, cells and organelles in mammals. Environ Health Perspect. 1982;45:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayashi Y, Ito Y, Yamagishi N, Yanagiba Y, Tamada H, Wang D, et al. Hepatic peroxisome proliferator-activated receptor α may have an important role in the toxic effects of di(2-ethylhexyl)phthalate on offspring of mice. Toxicology. 2011;289:1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Shoaito H, Petit J, Chissey A, Auzeil N, Guibourdenche J, Gil S, et al. The Role of Peroxisome Proliferator–Activated Receptor Gamma (PPARγ) in Mono(2-ethylhexyl) Phthalate (MEHP)-Mediated Cytotrophoblast Differentiation. Environ Health Persp. 2019;127:027003.

    Article  CAS  Google Scholar 

  23. Schoonjans K, Staels B, Auwerx J. The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Biochimica Et Biophysica Acta Bba - Lipids Lipid Metab. 1996;1302:93–109.

    Article  CAS  Google Scholar 

  24. Latruffe N, Vamecq J. Peroxisome proliferators and peroxisome proliferator activated receptors (PPARs) as regulators of lipid metabolism. Biochimie. 1997;79:81–94.

    Article  CAS  PubMed  Google Scholar 

  25. Ozaki H, Sugihara K, Watanabe Y, Ohta S, Kitamura S. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products. J Toxicol Sci. 2016;41:551–60.

    Article  CAS  PubMed  Google Scholar 

  26. Peng Z, Xueb G, Chen W, Xia S. Environmental inhibitors of the expression of cytochrome P450 17A1 in mammals. Environ Toxicol Pharmacol. 2019;69:16–25.

    Article  CAS  PubMed  Google Scholar 

  27. Perng W, Watkins DJ, Cantoral A, Mercado-García A, Meeker JD, Téllez-Rojo MM, et al. Exposure to phthalates is associated with lipid profile in peripubertal Mexican youth. Environ Res. 2017;154:311–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kupsco A, Wu H, Calafat AM, Kioumourtzoglou MA, Tamayo-Ortiz M, Pantic I, et al. Prenatal maternal phthalate exposures and child lipid and adipokine levels at age six: A study from the PROGRESS cohort of Mexico City. Environ Res. 2021;192:110341.

    Article  CAS  PubMed  Google Scholar 

  29. Jia X, Harada Y, Tagawa M, Naito H, Hayashi Y, Yetti H, et al. Prenatal maternal blood triglyceride and fatty acid levels in relation to exposure to di(2-ethylhexyl)phthalate: a cross-sectional study. Environ Health Prev Med. 2015;20:168–78.

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Gross RW. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24:367–412.

    Article  CAS  PubMed  Google Scholar 

  31. Zhou M, Ford B, Lee D, Tindula G, Huen K, Tran V, et al. Metabolomic Markers of Phthalate Exposure in Plasma and Urine of Pregnant Women. Front Public Health. 2018;6:298.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Meeker J, Ferguson K, Rosen E, Rosario Z, Feric Z, Cordero J, et al. Environmental phthalate exposure and preterm birth in the Puerto Rico Testsite for Exploring Contamination Threats (PROTECT) birth cohort. Environ Epidemiol. 2019;3:119.

    Google Scholar 

  33. Aung MT, Ashrap P, Watkins DJ, Mukherjee B, Rosario Z, Vélez-Vega CM, et al. Maternal lipidomic signatures in relation to spontaneous preterm birth and large-for-gestational age neonates. Sci Rep.-uk. 2021;11:8115.

    Article  CAS  Google Scholar 

  34. Richardson DB, Rzehak P, Klenk J, Weiland SK. Analyses of Case–Control Data for Additional Outcomes. Epidemiology. 2007;18:441–5.

    Article  PubMed  Google Scholar 

  35. Silva MJ, Samandar E, Preau JL Jr, Reidy JA, Needham LL, Calafat AM. Quantification of 22 phthalate metabolites in human urine. J Chromatogr B. 2007;860:106–12.

    Article  CAS  Google Scholar 

  36. Silva MJ, Jia T, Samandar E, Preau JL Jr, Calafat AM. Environmental exposure to the plasticizer 1,2-cyclohexane dicarboxylic acid, diisononyl ester (DINCH) in US adults (2000—2012). Environ Res. 2013;126:159–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Silva MJ, Wong LY, Samandar E, Preau JL Jr, Jia LT, Calafat AM. Exposure to di-2-ethylhexyl terephthalate in the U.S. general population from the 2015–2016 National Health and Nutrition Examination Survey. Environ Int. 2019;123:141–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lessmann F, Schütze A, Weiss T, Langsch A, Otter R, Brüning T, et al. Metabolism and urinary excretion kinetics of di(2-ethylhexyl) terephthalate (DEHTP) in three male volunteers after oral dosage. Arch Toxicol. 2016;90:1659–67.

    Article  CAS  PubMed  Google Scholar 

  39. Silva MJ, Samandar E, Calafat AM, Ye X. Identification of di-2-ethylhexyl terephthalate (DEHTP) metabolites using human liver microsomes for biomonitoring applications. Toxicol Vitr. 2015;29:716–21.

    Article  CAS  Google Scholar 

  40. Hornung RW, Reed LD. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl Occup Environ Hyg. 1990;5:46–51.

    Article  CAS  Google Scholar 

  41. Varshavsky JR, Morello-Frosch R, Woodruff TJ, Zota AR. Dietary sources of cumulative phthalates exposure among the U.S. general population in NHANES 2005–2014. Environ Int. 2018;115:417–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woodward MJ, Obsekov V, Jacobson MH, Kahn LG, Trasande L. Phthalates and sex steroid hormones among men from NHANES, 2013–2016. J Clin Endocrinol Metab. 2020;105:e1225–e1234.

    Article  PubMed Central  Google Scholar 

  43. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.

    Article  CAS  PubMed  Google Scholar 

  44. Gika HG, Macpherson E, Theodoridis GA, Wilson ID. Evaluation of the repeatability of ultra-performance liquid chromatography–TOF-MS for global metabolic profiling of human urine samples. J Chromatogr B. 2008;871:299–305.

    Article  CAS  Google Scholar 

  45. Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10:755–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mu X, Huang Y, Li J, Yang K, Yang W, Shen G, et al. New insights into the mechanism of phthalate-induced developmental effects. Environ Pollut. 2018;241:674–83.

    Article  CAS  PubMed  Google Scholar 

  47. Haemmerle G, Moustafa T, Woelkart G, Büttner S, Schmidt A, Van De Weijer T, et al. ATGL-mediated fat catabolism regulates cardiac mitochondrial function via PPAR-α and PGC-1. Nat Med. 2011;17:1076–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, et al. Fat Signals - Lipases and Lipolysis in Lipid Metabolism and Signaling. Cell Metab. 2012;15:279–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bobinski R, Mikulska M. The ins and outs of maternal-fetal fatty acid metabolism. Acta Biochim Pol. 2015;62:499–507.

    Article  CAS  PubMed  Google Scholar 

  50. Ogundipe E, Johnson MR, Wang Y, Crawford MA. Peri-conception maternal lipid profiles predict pregnancy outcomes. Prostaglandins Leukot Ess Fat Acids. 2016;114:35–43.

    Article  CAS  Google Scholar 

  51. Khaire A, Wadhwani N, Madiwale S, Joshi S. Maternal fats and pregnancy complications: implications for long-term health. Prostaglandins Leukot Ess Fat Acids. 2020;157:102098.

    Article  CAS  Google Scholar 

  52. Wang Y, Storlien LH, Jenkins AB, Tapsell LC, Jin Y, Pan JF, et al. Dietary variables and glucose tolerance in pregnancy. Diabetes Care. 2000;23:460–4.

    Article  CAS  PubMed  Google Scholar 

  53. Meeker JD, Hu H, Cantonwine DE, Lamadrid-Figueroa H, Calafat AM, Ettinger AS, et al. Urinary Phthalate Metabolites in Relation to Preterm Birth in Mexico City. Environ Health Perspect. 2009;117:1587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank the nurses and research staff who participated in cohort recruitment and follow up, as well as the Federally Qualified Health Centers (FQHC) and clinics in Puerto Rico who facilitated participant recruitment, including Morovis Community Health Center (FQHC), Prymed: Ciales Community Health Center (FQHC), Camuy Health Services, Inc. (FQHC), and the Delta OBGyn (Prenatal Clinic). This study was supported by the Superfund Research Program of the National Institute of Environmental Health Sciences, National Institutes of Health (grants P42ES017198 and). Additional support was provided from NIEHS grant numbers P50ES026049, R01ES032203, and P30ES017885 and the Environmental influences on Child Health Outcomes (ECHO) program grant number UH3OD023251. Support for Max Aung was provided in part by NIH award P30ES030284.

Author information

Authors and Affiliations



PA: Statistical analysis; Investigation; Methodology; Writing, review and editing. MTA: Writing, review and editing. DJW: Conceptualization; Funding acquisition. BM: Conceptualization; Supervision; Funding acquisition. ZR: Data curation; Project administration. CMV: Data curation; Project administration. AA: Conceptualization; Funding acquisition. JFC: Conceptualization; Funding acquisition. JDM: Conceptualization; Funding acquisition; Supervision.

Corresponding author

Correspondence to John D. Meeker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashrap, P., Aung, M.T., Watkins, D.J. et al. Maternal urinary phthalate metabolites are associated with lipidomic signatures among pregnant women in Puerto Rico. J Expo Sci Environ Epidemiol 32, 384–391 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Biomarkers
  • Exposure
  • Phthalates
  • Lipidomics
  • Puerto Rico


Quick links