Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early-life exposure to aluminum and fine motor performance in infants: a longitudinal study

Abstract

Background

Aluminum (Al) is a well-established neurotoxicant. However, little is known about its effects on the neurodevelopment of infants.

Objectives

To examine early-life exposure to Al in relation to neurodevelopment in healthy infants.

Methods

Nail Al concentrations were measured among 747 newborn babies within 6 months of delivery in the Shanghai Birth Cohort. Neurodevelopment was assessed using Ages and stages questionnaire (third edition, ASQ-3) at ages 6 and 12 months. General linear regression models were performed to estimate the associations between Al concentrations and ASQ-3 scores.

Results

After adjustment for potential confounders, early-life exposure to Al was not associated with any neurodevelopmental performance at age 6 months. However, Al level was associated with an increased risk of having a low fine motor score (quartile 4 vs. quartile 1, mean difference (MD): −1.63; 95% confidence interval (CI): −3.22, −0.05; P-trend < 0.01) at 12 months. No association was found for communication, gross motor, problem-solving, or personal-social score at 12 months.

Significance

Early-life exposure to Al may be associated with poor fine motor skills in a dose-response manner among apparently healthy infants at age 12 months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flow chart of study sampling.
Fig. 2

Similar content being viewed by others

References

  1. Stahl T, Falk S, Rohrbeck A, Georgii S, Herzog C, Wiegand A, et al. Migration of aluminum from food contact materials to food-a health risk for consumers? Part I of III: exposure to aluminum, release of aluminum, tolerable weekly intake (TWI), toxicological effects of aluminum, study design, and methods. Environ Sci Eur. 2017;29:19.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, et al. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10:1–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Corkins MR. Committee On Nutrition. Aluminum effects in infants and children. Pediatrics. 2019;144:e20193148.

    Article  PubMed  Google Scholar 

  4. Sappino AP, Buser R, Lesne L, Gimelli S, Bena F, Belin D, et al. Aluminium chloride promotes anchorage-independent growth in human mammary epithelial cells. J Appl Toxicol. 2012;32:233–43.

    Article  CAS  PubMed  Google Scholar 

  5. Chen Y, Tian X, Wang X. Advances in dialysis encephalopathy research: a review. Neurol Sci. 2018;39:1151–59.

    Article  PubMed  Google Scholar 

  6. Lu X. Occupational exposure to aluminum and cognitive impairment. Adv Exp Med Biol. 2018;1091:85–97.

    Article  CAS  PubMed  Google Scholar 

  7. Bondy SC. Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. Neurotoxicology. 2016;52:222–9.

    Article  CAS  PubMed  Google Scholar 

  8. Kruger PC, Schell LM, Stark AD, Parsons PJ. A study of the distribution of aluminium in human placental tissues based on alkaline solubilization with determination by electrothermal atomic absorption spectrometry. Metallomics. 2010;2:621–27.

    CAS  PubMed  Google Scholar 

  9. Ginsberg G, Hattis D, Miller R, Sonawane B. Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics. 2004;113:973–83.

    Article  PubMed  Google Scholar 

  10. Fernandez-Lorenzo JR, Cocho JA, Rey-Goldar ML, Couce M, Fraga JM. Aluminum contents of human milk, cow’s milk, and infant formulas. J Pediatr Gastroenterol Nutr. 1999;28:270–5.

    Article  CAS  PubMed  Google Scholar 

  11. Clements CJ, Griffiths E. The global impact of vaccines containing aluminium adjuvants. Vaccine. 2002;20:S24–33.

    Article  PubMed  Google Scholar 

  12. Cao Z, Yang X, Zhang H, Wang H, Huang W, Xu F, et al. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat. Chemosphere. 2016;151:289–95.

    Article  CAS  PubMed  Google Scholar 

  13. Abu-Taweel GM, Ajarem JS, Ahmad M. Neurobehavioral toxic effects of perinatal oral exposure to aluminum on the developmental motor reflexes, learning, memory and brain neurotransmitters of mice offspring. Pharm Biochem Behav. 2012;101:49–56.

    Article  CAS  Google Scholar 

  14. Zhang L, Jin C, Lu X, Yang J, Wu S, Liu Q, et al. Aluminium chloride impairs long-term memory and downregulates cAMP-PKA-CREB signalling in rats. Toxicology. 2014;323:95–108.

    Article  CAS  PubMed  Google Scholar 

  15. Golub MS, Han B, Keen CL, Gershwin ME, Tarara RP. Behavioral performance of Swiss Webster mice exposed to excess dietary aluminum during development or during development and as adults. Toxicol Appl Pharm. 1995;133:64–72.

    Article  CAS  Google Scholar 

  16. Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem. 2011;105:1489–99.

    Article  CAS  PubMed  Google Scholar 

  17. Khan NZ, Gallo LA, Arghir A, Budisteanu B, Budisteanu M, Dobrescu I, et al. Autism and the grand challenges in global mental health. Autism Res. 2012;5:156–59.

    Article  PubMed  Google Scholar 

  18. Karwowski MP, Stamoulis C, Wenren LM, Faboyede GM, Quinn N, Gura KM, et al. Blood and hair aluminum levels, vaccine history, and early infant. Dev: A Cross-Sect Study Acad Pediatr. 2018;18:161–65.

    Google Scholar 

  19. Michalke B, Kramer MF, Brehler R. Aluminium (Al) speciation in serum and urine after subcutaneous venom immunotherapy with Al as adjuvant. J Trace Elem Med Biol. 2018;49:178–83.

    Article  CAS  PubMed  Google Scholar 

  20. Barbosa F Jr, Tanus-Santos JE, Gerlach RF, PJ P. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ Health Perspect. 2005;113:1669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang J, Tian Y, Wang W, Ouyang F, Xu J, Yu X, et al. Cohort profile: the Shanghai Birth Cohort. Int J Epidemiol. 2019;48:21–21g.

    Article  PubMed  Google Scholar 

  22. The Standardization Administration of China. National Food Safety Standard  Determination of Multi-elements in Foods: GB5009. 268-2016. Beijing: Standards Press of China. 2017;1–14. 

  23. Singh A, Yeh CJ, Boone Blanchard S. Ages and Stages Questionnaire: a global screening scale. Bol Med Hosp Infant Mex. 2017;74:5–12.

    PubMed  Google Scholar 

  24. Squires J, Twombly E, Bricker D, Potter L. ASQ‐3 User’s Guide. Baltimore: Brookes Publishing; 2009.

  25. Charkaluk ML, Rousseau J, Calderon J, Bernard JY, Forhan A, Heude B, et al. Ages and stages questionnaire at 3 years for predicting IQ at 5–6 years. Pediatrics. 2017;139:e20162798.

    Article  PubMed  Google Scholar 

  26. Steenis LJ, Verhoeven M, Hessen DJ, van Baar AL. Parental and professional assessment of early child development: the ASQ-3 and the Bayley-III-NL. Early Hum Dev. 2015;91:217–25.

    Article  PubMed  Google Scholar 

  27. Mei Wei, Xiaoyan Bian, Jane Squires, Guoying Yao, Xiaochuan Wang, Huichao. X. Studies of the norm and psychometrical properties of the ages and stages questionnaires, third edition, with a Chinese national sample. Zhonghua Er Ke Za Zhi. 2015;53:913–18.

    Google Scholar 

  28. Zhou CC, Gao ZY, He YQ, Wu MQ, Chen F, Wang J, et al. Effects of lead, mercury, aluminium and manganese co-exposure on the serum BDNF concentration of pre-school children in Taizhou, China. Chemosphere. 2019;217:158–65.

    Article  CAS  PubMed  Google Scholar 

  29. Marques RC, Bernardi JVE, Dorea JG, Moreira MDR, Malm O. Perinatal multiple exposure to neurotoxic (lead, methylmercury, ethylmercury, and aluminum) substances and neurodevelopment at six and 24 months of age. Environ Pollut. 2014;187:130–35.

    Article  CAS  PubMed  Google Scholar 

  30. Polanska K, Jurewicz J. Hanke W. Smoking and alcohol drinking during pregnancy as the risk factors for poor child neurodevelopment—a review of epidemiological studies. Int J Occup Med Environ Health. 2015;28:419–43.

  31. Zhang H, Zhang JY, Wang HL, Luo PJ, Zhang JB. The revision of aluminum-containing food additive provisions in China. Biomed Environ Sci. 2016;29:461–66.

    PubMed  Google Scholar 

  32. Rogers EE, Hintz SR. Early neurodevelopmental outcomes of extremely preterm infants. Semin Perinatol. 2016;40:497–509.

    Article  PubMed  Google Scholar 

  33. Sirota L, Straussberg R, Fishman P, Dulitzky F, Djaldetti M. X-ray microanalysis of the fingernails in term and preterm infants. Pediatr Dermatol. 1988;5:184–86.

    Article  CAS  PubMed  Google Scholar 

  34. Jimenez M, Krall EA, Garcia RI, Vokonas PS, Dietrich T. Periodontitis and incidence of cerebrovascular disease in men. Ann Neurol. 2009;66:505–12.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shentu PP, Lv GJ, Zhu JH. Investigation on aluminium pollution in 958 flour products and dietary exposure assessment. Chin J Health Lab Technol. 2019;29:614–16.

    Google Scholar 

  36. Wu CF, Luo BZ, Zhu ZN, Liu H, Fang YM, Yu HT, et al. Assessment of dietary exposure level of aluminum in residents aged 15 years or above in Shanghai. J Environ Occup Med. 2016;33:529–35.

    CAS  Google Scholar 

  37. Cui FY, Hu MC, Zhang Y, Liu RQ, Cui CW. Investigation on aluminum concentration in drinking water in part of China’s cities. China Water Wastewater. 2002;18:5–8.

    CAS  Google Scholar 

  38. Gonda Z, Lehotzky K, Miklosi A. Neurotoxicity induced by prenatal aluminum exposure in rats. Neurotoxicology. 1996;17:459–69.

    CAS  PubMed  Google Scholar 

  39. Tinkov AA, Skalnaya MG, Simashkova NV, Klyushnik TP, Skalnaya AA, Bjorklund G, et al. Association between catatonia and levels of hair and serum trace elements and minerals in autism spectrum disorder. Biomed Pharmacother. 2019;109:174–80.

    Article  CAS  PubMed  Google Scholar 

  40. Souad C, Farida Z, Nadra L, Francois B, Bougle D, Azeddine S. Trace element level in infant hair and diet, and in the local environment of the Moroccan city of Marrakech. Sci Total Environ. 2006;370:337–42.

    Article  CAS  PubMed  Google Scholar 

  41. Karatela S, Ward NI, Zeng IS, Paterson J. Status and interrelationship of toenail elements in Pacific children. J Trace Elem Med Biol. 2018;46:10–16.

    Article  CAS  PubMed  Google Scholar 

  42. Sheth SKS, Li Y, Shaw CA. Is exposure to aluminium adjuvants associated with social impairments in mice? A pilot study. J Inorg Biochem. 2018;181:96–103.

    Article  CAS  PubMed  Google Scholar 

  43. Mold M, Umar D, King A, Exley C. Aluminium in brain tissue in autism. J Trace Elem Med Biol. 2018;46:76–82.

    Article  CAS  PubMed  Google Scholar 

  44. Yasuda H, Yasuda Y, Tsutsui T. Estimation of autistic children by metallomics analysis. Sci Rep. 2013;3:1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marks K, Glascoe FP, Aylward GP, Shevell MI, Lipkin PH, Squires JK. The thorny nature of predictive validity studies on screening tests for developmental-behavioral problems. Pediatrics. 2008;122:866–68.

    Article  PubMed  Google Scholar 

  46. McHale K, Cermak SA. Fine motor activities in elementary school: preliminary findings and provisional implications for children with fine motor problems. Am J Occup Ther. 1992;46:898–903.

    Article  CAS  PubMed  Google Scholar 

  47. Feder KP, Majnemer A. Handwriting development, competency, and intervention. Dev Med Child Neurol. 2007;49:312–17.

    Article  PubMed  Google Scholar 

  48. Armand J, Edgley SA, Lemon RN, Olivier E. Protracted postnatal development of corticospinal projections from the primary motor cortex to hand motoneurones in the macaque monkey. Exp Brain Res. 1994;101:178–82.

    Article  CAS  PubMed  Google Scholar 

  49. Chen J, Wang M, Ruan D, She J. Early chronic aluminium exposure impairs long-term potentiation and depression to the rat dentate gyrus in vivo. Neuroscience. 2002;112:879–87.

    Article  CAS  PubMed  Google Scholar 

  50. Llansola M, Minana MD, Montoliu C, Saez R, Corbalan R, Manzo L, et al. Prenatal exposure to aluminum reduces expression of neuronal nitric oxide synthase and of soluble guanylate cyclase and impairs glutamatergic neurotransmission in rat cerebellum. J Neurochem. 1999;73:712–18.

    Article  CAS  PubMed  Google Scholar 

  51. Kawahara M, Muramoto K, Kobayashi K, Kuroda Y. Functional and morphological changes in cultured neurons of rat cerebral cortex induced by long-term application of aluminum. Biochem Biophys Res Commun. 1992;189:1317–22.

    Article  CAS  PubMed  Google Scholar 

  52. Paternain JL, Domingo JL, Llobet JM, Corbella J. Embryotoxic and teratogenic effects of aluminum nitrate in rats upon oral administration. Teratology. 1988;38:253–57.

    Article  CAS  PubMed  Google Scholar 

  53. Kanazirska M, Vassilev PP, Birzon SY, Vassilev PM. Voltage-dependent effect of Al3+ on channel activities in hippocampal neurons. Biochem Biophys Res Commun. 1997;232:84–87.

    Article  CAS  PubMed  Google Scholar 

  54. Golub MS, Germann SL. Long-term consequences of developmental exposure to aluminum in a suboptimal diet for growth and behavior of Swiss Webster mice. Neurotoxicol Teratol. 2001;23:365–72.

    Article  CAS  PubMed  Google Scholar 

  55. Donald JM, Golub MS, Gershwin ME, Keen CL. Neurobehavioral effects in offspring of mice given excess aluminum in diet during gestation and lactation. Neurotoxicol Teratol. 1989;11:345–51.

    Article  CAS  PubMed  Google Scholar 

  56. Golub MS, Keen CL, Gershwin ME. Neurodevelopmental effect of aluminum in mice: fostering studies. Neurotoxicol Teratol. 1992;14:177–82.

    Article  CAS  PubMed  Google Scholar 

  57. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004;44:5–21.

    Article  CAS  PubMed  Google Scholar 

  58. Platt B, Carpenter DO, Busselberg D, Reymann KG, Riedel G. Aluminum impairs hippocampal long-term potentiation in rats in vitro and in vivo. Exp Neurol. 1995;134:73–86.

    Article  CAS  PubMed  Google Scholar 

  59. Yaemsiri S, Hou N, Slining MM, He K. Growth rate of human fingernails and toenails in healthy American young adults. J Eur Acad Dermatol Venereol. 2010;24:420–23.

    Article  CAS  PubMed  Google Scholar 

  60. He K. Trace elements in nails as biomarkers in clinical research. Eur J Clin Investig. 2011;41:98–102.

    Article  CAS  Google Scholar 

  61. Zaias N. The nail in health and disease: New York: Spectrum Publications; 1980.

  62. Punshon T, Li Z, Marsit CJ, Jackson BP, Baker ER, Karagas MR. Placental metal concentrations in relation to maternal and infant toenails in a U.S. Cohort. Environ Sci Technol. 2016;50:1587–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (81573140 and 81530086), and was partially funded by the Shanghai Municipal Health Commission and the Shanghai Jiao Tong University School of Medicine, and supported by the National Human Genetic Resources Sharing Service Platform (2005DKA21300).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ka Kahe.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Yang, K., Chen, C. et al. Early-life exposure to aluminum and fine motor performance in infants: a longitudinal study. J Expo Sci Environ Epidemiol 31, 248–256 (2021). https://doi.org/10.1038/s41370-021-00294-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-021-00294-9

Keywords

This article is cited by

Search

Quick links