Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The association between residential proximity to brownfield sites and high-traffic areas and measures of immunity

Abstract

The mechanisms by which neighborhood environmental exposures influence health are poorly understood, although immune system dysregulation represents a potential biological pathway. While many neighborhood exposures have been investigated, there is little research on residential proximity to brownfield waste. Using biomarker data from 262 participants in the Detroit Neighborhood Health Study, we estimated the association between proximity to brownfields and heavy traffic and signal joint T-cell receptor excision circles (sjTRECs, a measure of naive T-cell production), C-reactive protein (CRP, a measure of systemic inflammation), and interleukin-6 (IL-6, a pro-inflammatory cytokine). We assessed residential proximity ≤200 m from brownfields and highways on all three biomarkers using multivariate regression. We demonstrated that living ≤200 m from a brownfield site was associated with a 0.30 (95% CI = 0.59, 0.02, p = 0.04) loge-unit decrease in sjTRECs per million whole blood cells, as well as non-significantly elevated levels of CRP and IL-6. Heavy traffic was not associated with any biomarker. Persons living in close proximity to brownfield sites had significantly lower naive T-cell production, suggesting accelerated immune aging. Decreased T-cell production associated with brownfield proximity may be caused by toxicant exposure in brownfield sites, or may serve as a marker of other neighborhood stressors.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Simplified conceptual diagram of two pathways leading from brownfield proximity to thymic function (as measured by sjTRECs).

References

  1. De Roos AJ, Koehoorn M, Tamburic L, Davies HW, Brauer M. Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis. Environ Health Perspect. 2014;122:1075–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D. Lung cancer and exposure to nitrogen dioxide and traffic: a systematic review and meta-analysis. Environ Health Perspect. 2015;123:1107–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, et al. Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. Environ Health Perspect. 2014;122:703–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hoffmann B, Moebus S, Dragano N, Stang A, Möhlenkamp S, Schmermund A, et al. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect. 2009;117:1302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanna-Attisha M, LaChance JL, Sadler RC, Schnepp AC. Elevated blood lead levels in children associated with the flint drinking water crisis: a spatial analysis of risk and public health response. Am J Public Health. 2016;106:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Joseph CLM, Havstad S, Ownby DR, Peterson EL, Maliarik M, McCabe MJ, et al. Blood lead level and risk of asthma. Environ Health Perspect. 2005;113:900–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hicken MT, Gee GC, Connell C, Snow RC, Morenoff J, Hu H. Black–White blood pressure disparities: depressive symptoms and differential vulnerability to blood lead. Environ Health Perspect. 2013;121:205–9.

    Article  PubMed  CAS  Google Scholar 

  8. Sadler RC, LaChance J, Hanna-Attisha M. Social and built environmental correlates of predicted blood lead levels in the flint water crisis. Am J Public Health. 2017;107:763–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qian Y, Gallagher F, Deng Y, Wu M, Feng H. Risk assessment and interpretation of heavy metal contaminated soils on an urban brownfield site in New York metropolitan area. Environ Sci Pollut Res. 2017;24:23549–58.

    Article  CAS  Google Scholar 

  10. Pan L, Wang Y, Ma J, Hu Y, Su B, Fang G, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ Sci Pollut Res. 2018;25:1055–69.

    Article  CAS  Google Scholar 

  11. Megharaj M, Naidu R. Soil and brownfield bioremediation. Micro Biotechnol. 2017;10:1244–9.

    Article  CAS  Google Scholar 

  12. Pizzol L, Zabeo A, Klusáček P, Giubilato E, Critto A, Frantál B, et al. Timbre brownfield prioritization tool to support effective brownfield regeneration. J Environ Manag. 2016;166:178–92.

    Article  Google Scholar 

  13. Greenberg MR. Reversing urban decay: brownfield redevelopment and environmental health. Environ Health Perspect. 2003;111:A74–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greenberg M. Should housing be built on former brownfield sites? Am J Public Health. 2002;92:703–5.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Maantay JA, Maroko AR. Brownfields to greenfields: environmental justice versus environmental gentrification. Int J Environ Res Public Healt. 2018;15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6210586.

  16. Bambra C, Cairns JM, Kasim A, Smith J, Robertson S, Copeland A, et al. This divided land: an examination of regional inequalities in exposure to brownfield land and the association with morbidity and mortality in England. Health Place. 2015;34:257–69.

    Article  PubMed  Google Scholar 

  17. Litt JS, Tran NL, Burke TA. Examining urban brownfields through the public health “macroscope”. Environ Health Perspect. 2002;110:183–93.

  18. United States Environmental Protection Agency. Summary of the Small Business Liability Relief and Brownfields Revitalization Act. 2002. https://www.epa.gov/brownfields/summary-small-business-liability-relief-and-brownfields-revitalization-act#title2.

  19. Généreux M, Auger N, Goneau M, Daniel M. Neighbourhood socioeconomic status, maternal education and adverse birth outcomes among mothers living near highways. J Epidemiol Community Health. 2008;6:695–700.

    Article  Google Scholar 

  20. Kingsley SL, Eliot MN, Whitsel EA, Huang Y-T, Kelsey KT, Marsit CJ, et al. Maternal residential proximity to major roadways, birth weight, and placental DNA methylation. Environ Int. 2016;92–93:43–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McGuinn LA, Voss RW, Laurent CA, Greenspan LC, Kushi LH, Windham GC. Residential proximity to traffic and female pubertal development. Environ Int. 2016;94:635–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. J Keeler G, Dvonch T, Yip F, Parker E, A Isreal B, Marsik F, et al. Assessment of personal and community-level exposures to particulate matter among children with asthma in Detroit, Michigan, as part of Community Action Against Asthma (CAAA). Environ Health Perspect. 2002;110 Suppl 2:173–81.

    Article  Google Scholar 

  23. Riley S, Wallace J, Nair P. Proximity to major roadways is a risk factor for airway hyper-responsiveness in adults. Can Respir J. 2012;19:89–95.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ward-Caviness CK, Kraus WE, Blach C, Haynes CS, Dowdy E, Miranda ML, et al. Associations between residential proximity to traffic and vascular disease in a cardiac catheterization cohort. Arterioscler Thromb Vasc Biol. 2018;38:275–82.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang S, Bo L, Gong C, Du X, Kan H, Xie Y, et al. Traffic-related air pollution is associated with cardio-metabolic biomarkers in general residents. Int Arch Occup Environ Health. 2016;89:911–21.

    Article  CAS  PubMed  Google Scholar 

  26. Guang-Hui Dong, Zhengmin (Min) Qian, Xaverius Pamela K, Edwin Trevathan, Salwa Maalouf, Jamaal Parker, et al. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension 2013;61:578–84.

    Article  CAS  Google Scholar 

  27. Liu C, Chen R, Zhao Y, Ma Z, Bi J, Liu Y, et al. Associations between ambient fine particulate air pollution and hypertension: a nationwide cross-sectional study in China. Sci Total Environ. 2017;584–585:869–74.

  28. Tan C, Lu S, Wang Y, Zhu Y, Shi T, Lin M, et al. Long-term exposure to high air pollution induces cumulative DNA damages in traffic policemen. Sci Total Environ. 2017;593–594:330–6.

  29. Diez Roux AV, Auchincloss AH, Astor B, Barr RG, Cushman M, Dvonch T, et al. Recent exposure to particulate matter and C-reactive protein concentration in the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2006;164:437–48.

    Article  CAS  PubMed  Google Scholar 

  30. Lanki T, Hampel R, Tiittanen P, Andrich S, Beelen R, Brunekreef B, et al. Air pollution from road traffic and systemic inflammation in adults: a cross-sectional analysis in the European ESCAPE project. Environ Health Perspect. 2015;123:785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Williams LA, Ulrich CM, Larson T, Wener MH, Wood B, Campbell PT, et al. Proximity to traffic, inflammation, and immune function among women in the seattle, washington, area. Environ Health Perspect. 2009;117:373–8.

    Article  CAS  PubMed  Google Scholar 

  32. State of Michigan Legislature. Act 451 of 1994: Natural Resources and Environmental Protection Act. 1994. http://www.legislature.mi.gov/(S(msqwoo5jvp5ypk31z5kywvyn))/mileg.aspx?page=print&objectname=mcl-Act-451-of-1994.

  33. Goldmann E, Aiello A, Uddin M, Delva J, Koenen K, Gant LM, et al. Pervasive exposure to violence and posttraumatic stress disorder in a predominantly African American urban community. J Trauma Stress. 2011;24:747–51.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de los Santos R, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci USA. 2010;107:9470–5.

    Article  CAS  PubMed  Google Scholar 

  35. Ferrando-Martínez S, Franco JM, Ruiz-Mateos E, Hernández A, Ordoñez A, Gutierrez E, et al. A reliable and simplified sj/β-TREC ratio quantification method for human thymic output measurement. J Immunol Methods. 2010;352:111–7.

    Article  PubMed  CAS  Google Scholar 

  36. Ferrando-Martínez S, Romero-Sánchez MC, Solana R, Delgado J, de la Rosa R, Muñoz-Fernández MÁ, et al. Thymic function failure and C-reactive protein levels are independent predictors of all-cause mortality in healthy elderly humans. Age. 2013;35:251–9.

    Article  PubMed  CAS  Google Scholar 

  37. Feinstein L, Ferrando-Martínez S, Leal M, Zhou X, Sempowski GD, Wildman DE, et al. Population distributions of thymic function in adults: variation by sociodemographic characteristics and health status. Biodemography Soc Biol. 2016;62:208–21.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brugge D, Durant JL, Rioux C. Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environ Health. 2007;6:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu Y-C, Batterman SA. Proximity of schools in Detroit, Michigan to automobile and truck traffic. J Exposure Sci Environ Epidemiol. 2006;16:457–70.

    Article  Google Scholar 

  40. Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol. 2013;177:292–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131–5.

    Article  CAS  PubMed  Google Scholar 

  42. Timpson NJ, Nordestgaard BG, Harbord RM, Zacho J, Frayling TM, Tybjærg-Hansen A, et al. C-reactive protein levels and body mass index: elucidating direction of causation through reciprocal Mendelian randomization. Int J Obes. 2011;35:300–8.

    Article  CAS  Google Scholar 

  43. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83:847–50.

    CAS  PubMed  Google Scholar 

  44. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-α, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.

    CAS  PubMed  Google Scholar 

  45. Khaodhiar L, Ling P-R, Blackburn GL, Bistrian BR. Serum levels of interleukin-6 and C-reactive protein correlate with body mass index across the broad range of obesity. JPEN J Parenter Enter Nutr. 2004;28:410–5.

    Article  CAS  Google Scholar 

  46. Tonstad S, Cowan JL. C-reactive protein as a predictor of disease in smokers and former smokers: a review. Int J Clin Pr. 2009;63:1634–41.

    Article  CAS  Google Scholar 

  47. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, et al. Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev. 2007;128:92–105.

    Article  CAS  PubMed  Google Scholar 

  48. Goronzy JJ, Lee W-W, Weyand CM. Aging and T-cell diversity. Exp Gerontol. 2007;42:400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Naylor K, Li G, Vallejo AN, Lee W-W, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52.

    Article  CAS  PubMed  Google Scholar 

  50. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MRM, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. Trends Immunol. 2009;30:366–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Petrová Š, Rezek J, Soudek P, Vaněk T. Preliminary study of phytoremediation of brownfield soil contaminated by PAHs. Sci Total Environ. 2017;599–600:572–80.

    Article  PubMed  CAS  Google Scholar 

  52. Litt JS, Burke TA. Uncovering the historic environmental hazards of urban brownfields. J Urban Health. 2002;79:464–81.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yoon B-I, Hirabayashi Y, Kawasaki Y, Kodama Y, Kaneko T, Kim D-Y, et al. Mechanism of action of benzene toxicity: cell cycle suppression in hemopoietic progenitor cells (CFU-GM). Exp Hematol. 2001;29:278–85.

    Article  CAS  PubMed  Google Scholar 

  54. Infante PF. Residential proximity to gasoline stations and risk of childhood leukemia. Am J Epidemiol. 2017;185:1–4.

    Article  PubMed  Google Scholar 

  55. Glass DC, Gray CN, Jolley DJ, Gibbons C, Sim MR, Fritschi L, et al. Leukemia risk associated with low-level benzene exposure. Epidemiology. 2003;14:569.

    Article  PubMed  Google Scholar 

  56. McAvoy PV, Driscoll MB, Gramling BJ. Integrating the environment, the economy, and community health: a community health center’s initiative to link health benefits to smart growth. Am J Public Health. 2004;94:525–7.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Farley R. The bankruptcy of Detroit: what role did race play? City Community. 2015;14:118–37.

    Article  Google Scholar 

  58. Aiello AE, Feinstein L, Dowd JB, Pawelec G, Derhovanessian E, Galea S, et al. Income and markers of immunological cellular aging. Psychosom Med. 2016;78:657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hazenberg MD, Verschuren MC, Hamann D, Miedema F, Dongen JJ. T cell receptor excision circles as markers for recent thymic emigrants: basic aspects, technical approach, and guidelines for interpretation. J Mol Med. 2001;79:631–40.

    Article  CAS  PubMed  Google Scholar 

  60. Dhingra R, Nwanaji-Enwerem JC, Samet M, Ward-Caviness CK. DNA methylation age—environmental influences, health impacts, and its role in environmental epidemiology. Curr Envir Health Rpt. 2018;5:317–27.

    Article  CAS  Google Scholar 

  61. Shin J, Choi J, Kim KJ. Association between long-term exposure of ambient air pollutants and cardiometabolic diseases: a 2012 Korean Community Health Survey. Nutr Metab Cardiovasc Dis. 2019;29:144–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Detroit Neighborhood Health Study received funding from the National Institutes of Health (R01 DA022720, R01 MD011728). The University of Michigan Nathan Shock Center provided funding for IL-6 and CRP testing (AG013283). Lodge was supported by the University of North Carolina at Chapel Hill Medical Scientist Training Program (T32 GM008719–18), the National Institute of Environmental Health Sciences (T32 ES007018), the National Institute of Child Health and Human Development (T32 HD007168), and the University of North Carolina at Chapel Hill Graduate School Doctoral Merit Assistantship. Data Driven Detroit (https://datadrivendetroit.org) provided data on brownfield sites in Detroit obtained by the Michigan Department of Environmental Quality (MDEQ) in 2014 with the help of N. Urban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison E. Aiello.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lodge, E.K., Engel, L.S., Ferrando-Martínez, S. et al. The association between residential proximity to brownfield sites and high-traffic areas and measures of immunity. J Expo Sci Environ Epidemiol 30, 824–834 (2020). https://doi.org/10.1038/s41370-020-0226-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0226-2

Keywords

  • Epidemiology
  • Population-based studies
  • Personal exposure
  • Exposure modeling
  • Environmental monitoring

Search

Quick links