Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Associations between sociodemographic characteristics and exposures to PBDEs, OH-PBDEs, PCBs, and PFASs in a diverse, overweight population of pregnant women

Abstract

Exposures to persistent organohalogen chemicals during pregnancy are associated with adverse health effects. Low-income, minority women with pre-existing co-morbidities may be particularly vulnerable to these exposures, but have historically been understudied. We aimed to characterize exposures to multiple chemical classes among a sample of ethnically diverse, lower income, overweight or obese pregnant women. Serum concentrations of polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs), polychlorinated biphenyls (PCBs), and poly- and perfluoroalkyl substances (PFASs) were measured in 98 pregnant women (California; 2011–2013). Aggregate exposures were evaluated using correlational clustering, a “chemical burden” score, and PCA. Associations between sociodemographic characteristics and individual and aggregate exposures were evaluated using multivariable linear regression. Clustering and PCA both produced four groupings: (PC1) PBDEs/OH-PBDEs, (PC2) PCBs, (PC3) PFNA/PFOA/PFDeA, (PC4) PFHxS/PFOS. Race/ethnicity and prepregnancy BMI were associated with PBDEs, OH-PBDEs and PC1. Maternal age was associated with PCBs and PC2. Parity was associated with PBDEs, OH-PBDEs and PC2. Poverty was negatively associated with PCBs, whereas food insecurity was positively associated with PFOS. We observed variations in sociodemographic profiles of exposures by chemical class and weak across-class correlations. These findings have implications for epidemiologic studies of chemical mixtures and for exposure reduction strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Diamanti-Kandarakis E, Bourguignon J, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Jain RB. Contribution of diet and other factors to the levels of selected polyfluorinated compounds: data from NHANES 2003–2008. Int J Hyg Environ Health. 2014;217:52–61.

    CAS  PubMed  Google Scholar 

  3. Sjödin A, Jones RS, Caudill SP, Wong L, Turner WE, Calafat AM. Polybrominated diphenyl ethers, polychlorinated biphenyls, and persistent pesticides in serum from the National Health and Nutrition Examination Survey: 2003–2008. Environ Sci Technol. 2013;48:753–60.

    PubMed  PubMed Central  Google Scholar 

  4. Mitro SD, Johnson T, Zota AR. Cumulative chemical exposures during pregnancy and early development. Curr Environ Health Rep. 2015;2:367–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119:878.

    PubMed  PubMed Central  Google Scholar 

  6. Barr DB, Bishop A, Needham LL. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod Toxicol. 2007;23:260–6.

    CAS  PubMed  Google Scholar 

  7. Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106:905–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hurley S, Goldberg D, Wang M, Park J-S, Petreas M, Bernstein L, et al. Time trends in perfluoroalkyl and polyfluoroalkyl substances (PFASs): varying declines in California women, 2011–2015. Environ Sci Technol. 2018;52:277–87.

    CAS  PubMed  Google Scholar 

  9. Parry E, Zota AR, Park J, Woodruff TJ. Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDE metabolites (OH-PBDEs): a six-year temporal trend in Northern California pregnant women. Chemosphere. 2018;195:777–83.

    CAS  PubMed  Google Scholar 

  10. Wang M, Park J-S, Petreas M. Temporal changes in the levels of perfluorinated compounds in California women serum over the past 50 Years. Environ Sci Technol. 2011;45:7510–6.

    CAS  PubMed  Google Scholar 

  11. US Environmental Protection Agency. America’s children and the environment, 3rd ed. Washington DC: U.S. EPA, Office of Policy; 2017. https://www.epa.gov/sites/production/files/2015-06/documents/ace3_2013.pdf.

  12. James RA, Hertz-Picciotto I, Willman E, Keller JA, Charles MJ. Determinants of serum polychlorinated biphenyls and organochlorine pesticides measured in women from the child health and development study cohort, 1963–1967. Environ Health Perspect. 2002;110(Jul):617–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Borrell LN, Factor-Litvak P, Wolff MS, Susser E, Matte TD. Effect of socioeconomic status on exposures to polychlorinated biphenyls (PCBs) and dichlorodiphenyldichloroethylene (DDE) among pregnant African-American women. Arch Environ Health. 2004;59:250–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vrijheid M, Martinez D, Aguilera I, Ballester F, Basterrechea M, Esplugues A, et al. Socioeconomic status and exposure to multiple environmental pollutants during pregnancy: evidence for environmental inequity? J Epidemiol Community Health. 2012;66:106–13.

    PubMed  Google Scholar 

  15. Wolff MS, Deych E, Ojo F, Berkowitz GS. Predictors of organochlorines in New York City pregnant women, 1998–2001. Environ Res. 2005;97:170–7.

    CAS  PubMed  Google Scholar 

  16. Evans AM, Rice GE, Teuschler LK, Wright JM. Joint exposure to chemical and nonchemical neurodevelopmental stressors in U.S. women of reproductive age in NHANES. Int J Environ Res Public Health. 2014;11:4384–401.

    PubMed  PubMed Central  Google Scholar 

  17. Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. Understanding the cumulative impacts of inequalities in environmental health: implications for policy. Health Aff. 2011;30:879–87.

    Google Scholar 

  18. Sexton K, Linder SH. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors. Am J Public Health. 2011;101:81–8.

    Google Scholar 

  19. Braun JM, Kalkbrenner AE, Just AC, Yolton K, Calafat AM, Sjodin A, et al. Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: The HOME study. Environ Health Perspect. 2014;122:513–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee W, Fisher M, Davis K, Arbuckle TE, Sinha SK. Identification of chemical mixtures to which Canadian pregnant women are exposed: the MIREC Study. Environ Int. 2017;99:321–30.

    CAS  PubMed  Google Scholar 

  21. Robinson O, Basagaña X, Agier L, De Castro M, Hernandez-Ferrer C, Gonzalez JR, et al. The pregnancy exposome: multiple environmental exposures in the INMA-Sabadell birth cohort. Environ Sci Technol. 2015;49:10632–41.

    CAS  PubMed  Google Scholar 

  22. Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Karagas M, et al. Profiles and predictors of environmental chemical mixture exposure among pregnant women: The Health Outcomes and Measures of the Environment Study. Environ Sci Technol. 2018;52:10104–13.

    CAS  PubMed  Google Scholar 

  23. Vieten C, Laraia BA, Kristeller J, Adler N, Coleman-Phox K, Bush NR, et al. The mindful moms training: development of a mindfulness-based intervention to reduce stress and overeating during pregnancy. BMC Pregnancy Childbirth. 2018;18:201.

    PubMed  PubMed Central  Google Scholar 

  24. Coleman-Phox K, Laraia BA, Adler N, Vieten C, Thomas N, Epel E. Recruitment and retention of pregnant women for a behavioral intervention: lessons from the maternal adiposity, metabolism, and stress (MAMAS) study. Prev Chronic Dis. 2013;10:120096.

  25. Zota AR, Geller RJ, Romano LE, Coleman-Phox K, Adler NE, Parry E, et al. Association between persistent endocrine-disrupting chemicals (PBDEs, OH-PBDEs, PCBs, and PFASs) and biomarkers of inflammation and cellular aging during pregnancy and postpartum. Environ Int. 2018;115:9–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zota AR, Park JS, Wang Y, Petreas M, Zoeller RT, Woodruff TJ. Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in California. Environ Sci Technol. 2011;45:7896–905.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Phillips DL, Pirkle JL, Burse VW, Bernert JT, Henderson LO, Needham LL. Chlorinated hydrocarbon levels in human serum: effects of fasting and feeding. Arch Environ Contam Toxicol. 1989;18:495–500.

    CAS  PubMed  Google Scholar 

  28. Baccarelli A, Pfeiffer R, Consonni D, Pesatori AC, Bonzini M, Patterson DG Jr, et al. Handling of dioxin measurement data in the presence of non-detectable values: overview of available methods and their application in the Seveso chloracne study. Chemosphere. 2005;60:898–06.

    CAS  PubMed  Google Scholar 

  29. Helsel DR. Less than obvious-statistical treatment of data below the detection limit. Environ Sci Technol. 1990;24:1766–74.

    CAS  Google Scholar 

  30. US Department of Agriculture. Economic Research Service. US Household Food Security Survey Module. 2012. https://www.ers.usda.gov/media/8279/ad2012.pdf.

  31. Guenther PM, Casavale KO, Reedy J, Kirkpatrick SI, Hiza HA, Kuczynski KJ, et al. Update of the healthy eating index: HEI-2010. Journal of the Academy of Nutrition and Dietetics. 2013;113:569–80.

    PubMed  Google Scholar 

  32. Ibarluzea J, Alvarez-Pedrerol M, Guxens M, Santa Marina L, Basterrechea M, Lertxundi A, et al. Sociodemographic, reproductive and dietary predictors of organochlorine compounds levels in pregnant women in Spain. Chemosphere. 2011;82:114–20.

    CAS  PubMed  Google Scholar 

  33. Lewin A, Arbuckle TE, Fisher M, Liang CL, Marro L, Davis K, et al. Univariate predictors of maternal concentrations of environmental chemicals: the MIREC study. Int J Hyg Environ Health. 2017;220:77–85.

    CAS  PubMed  Google Scholar 

  34. Louis GM, Sapra KJ, Barr DB, Lu Z, Sundaram R. Preconception perfluoroalkyl and polyfluoroalkyl substances and incident pregnancy loss, LIFE Study. Reprod Toxicol. 2016;65:11–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Morello-Frosch R, Cushing LJ, Jesdale BM, Schwartz JM, Guo W, Guo T, et al. Environmental chemicals in an urban population of pregnant women and their newborns from San Francisco. Environ Sci Technol. 2016;50:12464–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Starling AP, Adgate JL, Hamman RF, Kechris K, Calafat AM, Ye X, et al. Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: examining mediation by maternal fasting glucose in the Healthy Start study. Environ Health Perspect. 2017;125:067016.

    PubMed  PubMed Central  Google Scholar 

  37. Halldorsson TI, Fei C, Olsen J, Lipworth L, Mclaughlin JK, Olsen SF. Dietary predictors of perfluorinated chemicals: a study from the Danish National Birth Cohort. Environ Sci Technol. 2008;42:8971–7.

    CAS  PubMed  Google Scholar 

  38. Manzano-Salgado CB, Casas M, Lopez-Espinosa MJ, Ballester F, Martinez D, Ibarluzea J, et al. Variability of perfluoroalkyl substance concentrations in pregnant women by socio-demographic and dietary factors in a Spanish birth cohort. Environ Int. 2016;92:357–65.

    PubMed  Google Scholar 

  39. Sagiv SK, Rifas-Shiman SL, Webster TF, Mora AM, Harris MH, Calafat AM, et al. Sociodemographic and perinatal predictors of early pregnancy per-and polyfluoroalkyl substance (PFAS) concentrations. Environ Sci Technol. 2015;49:11849–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Schaider LA, Balan SA, Blum A, Andrews DQ, Strynar MJ, Dickinson ME, et al. Fluorinated compounds in US fast food packaging. Environ Sci Technol Lett. 2017;4:105–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuan G, Peng H, Huang C, Hu J. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol. 2016;50:942–50.

    CAS  PubMed  Google Scholar 

  42. Tittlemier SA, Pepper K, Seymour C, Moisey J, Bronson R, Cao XL, et al. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J Agric Food Chem. 2007;55:3203–10.

    CAS  PubMed  Google Scholar 

  43. Harris MH, Rifas-Shiman SL, Calafat AM, Ye X, Mora AM, Webster TF, et al. Predictors of per- and polyfluoroalkyl substance (PFAS) plasma concentrations in 6–10 year old American children. Environ Sci Technol. 2017;51:5193–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Boronow KE, Brody JG, Schaider LA, Peaslee GF, Havas L, Cohn BA. Serum concentrations of PFASs and exposure-related behaviors in African American and non-Hispanic white women. J Exposure Sci Environ Epidemiol. 2019;29:206.

    Google Scholar 

  45. Olsen GW, Burris JM, Ehresman DJ, Froehlich JW, Seacat AM, Butenhoff JL, et al. Half-life of serum elimination of perfluorooctanesulfonate, perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers. Environ Health Perspect. 2007;115:1298–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rotander A, Toms LM, Aylward L, Kay M, Mueller JF. Elevated levels of PFOS and PFHxS in firefighters exposed to aqueous film forming foam (AFFF). Environ Int. 2015;82:28–34.

    CAS  PubMed  Google Scholar 

  47. Siebenaler R, Cameron R, Butt CM, Hoffman K, Higgins CP, Stapleton HM. Serum perfluoroalkyl acids (PFAAs) and associations with behavioral attributes. Chemosphere. 2017;184:687–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wu XM, Bennett DH, Calafat AM, Kato K, Strynar M, Andersen E, et al. Serum concentrations of perfluorinated compounds (PFC) among selected populations of children and adults in California. Environ Res. 2015;136:264–73.

    CAS  PubMed  Google Scholar 

  49. D’eon JC, Mabury SA. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ Sci Technol. 2011;45:7974–84.

    PubMed  Google Scholar 

  50. Wang Y, Rogan WJ, Chen HY, Chen PC, Su PH, Chen HY, et al. Prenatal exposure to perfluroalkyl substances and children’s IQ: the Taiwan maternal and infant cohort study. Int J Hyg Environ Health. 2015;218:639–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen MH, Ha EH, Liao HF, Jeng SF, Su YN, Wen TW, et al. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology. 2013;1:800–8.

    Google Scholar 

  52. Lam J, Koustas E, Sutton P, Johnson PI, Atchley DS, Sen S, et al. The Navigation Guide—evidence-based medicine meets environmental health: integration of animal and human evidence for PFOA effects on fetal growth. Environ Health Perspect. 2014;122:1040–51.

    PubMed  PubMed Central  Google Scholar 

  53. National Toxicology Program (NTP). NTP monograph on immunotoxicity associated with exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Research Triangle Park, NC: National Toxicology Program; 2016. https://ntp.niehs.nih.gov/ntp/ohat/pfoa_pfos/pfoa_pfosmonograph_508.pdf.

  54. Liu G, Dhana K, Furtado JD, Rood J, Zong G, Liang L, et al. Perfluoroalkyl substances and changes in body weight and resting metabolic rate in response to weight-loss diets: A prospective study. PLoS Med. 2018;15:e1002502.

    PubMed  PubMed Central  Google Scholar 

  55. Benbrahim-Tallaa L, Lauby-Secretan B, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, et al. Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1, 2-dichloropropane, and 1, 3-propane sultone. Lancet Oncol. 2014;15:924–5.

    PubMed  Google Scholar 

  56. Lam J, Lanphear BP, Bellinger D, Axelrad DA, McPartland J, Sutton P, et al. Developmental PBDE exposure and IQ/ADHD in childhood: a systematic review and meta-analysis. Environ Health Perspect. 2017;125:086001.

    PubMed  PubMed Central  Google Scholar 

  57. Costa LG, de Laat R, Tagliaferri S, Pellacani C. A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity. Toxicol Lett. 2014;230:282–94.

    CAS  PubMed  Google Scholar 

  58. Zota AR, Linderholm L, Park JS, Petreas M, Guo T, Privalsky ML, et al. Temporal comparison of PBDEs, OH-PBDEs, PCBs, and OH-PCBs in the serum of second trimester pregnant women recruited from San Francisco General Hospital, California. Environ Sci Technol. 2013;47:11776–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Horton MK, Bousleiman S, Jones R, Sjodin A, Liu X, Whyatt R, et al. Predictors of serum concentrations of polybrominated flame retardants among healthy pregnant women in an urban environment: a cross-sectional study. Environ Health. 2013;12:23.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Cowell WJ, Sjödin A, Jones R, Wang Y, Wang S, Herbstman JB. Determinants of prenatal exposure to polybrominated diphenyl ethers (PBDEs) among urban, minority infants born between 1998 and 2006. Environ Pollut. 2018;233:774–81.

    CAS  PubMed  Google Scholar 

  61. James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: epidemiological examples across the life course. Curr Epidemiol Rep. 2016;3:161–80.

    PubMed  PubMed Central  Google Scholar 

  62. Zota AR, Adamkiewicz G, Morello-Frosch RA. Are PBDEs an environmental equity concern? Exposure disparities by socioeconomic status. Environ Sci Technol. 2010;44:5691.

    CAS  PubMed  Google Scholar 

  63. Whitehead TP, Brown FR, Metayer C, Park JS, Does M, Petreas MX, et al. Polybrominated diphenyl ethers in residential dust: sources of variability. Environ Int. 2013;57:11–24.

    PubMed  Google Scholar 

  64. Janesick AS, Blumberg B. Obesogens: an emerging threat to public health. Am J Obstet Gynecol. 2016;214:559–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Deputy NP, Dub B, Sharma AJ. Prevalence and trends in prepregnancy normal weight—48 states, New York City, and District of Columbia, 2011–5. MMWR. 2018;66:1402.

    PubMed  PubMed Central  Google Scholar 

  66. Xue J, Liu SV, Zartarian VG, Geller AM, Schultz BD. Analysis of NHANES measured blood PCBs in the general US population and application of SHEDS model to identify key exposure factors. J Exposure Sci Environ Epidemiol. 2014;24:615.

    CAS  Google Scholar 

  67. Fisher M, Arbuckle TE, Liang CL, LeBlanc A, Gaudreau E, Foster WG, et al. Concentrations of persistent organic pollutants in maternal and cord blood from the maternal-infant research on environmental chemicals (MIREC) cohort study. Environ Health. 2016;15:59.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Susanna Mitro and Ruth Geller for their assistance with data management and analyses. This research was supported by the National Institutes of Health grants (U01 HL097973 and NIEHS R00ES019881).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suril S. Mehta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.S., Applebaum, K.M., James-Todd, T. et al. Associations between sociodemographic characteristics and exposures to PBDEs, OH-PBDEs, PCBs, and PFASs in a diverse, overweight population of pregnant women. J Expo Sci Environ Epidemiol 30, 42–55 (2020). https://doi.org/10.1038/s41370-019-0173-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-019-0173-y

Keywords

This article is cited by

Search

Quick links