Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The impact of air exchange rate on ambient air pollution exposure and inequalities across all residential parcels in Massachusetts

Abstract

Individual housing characteristics can modify outdoor ambient air pollution infiltration through air exchange rate (AER). Time and labor-intensive methods needed to measure AER has hindered characterization of AER distributions across large geographic areas. Using publicly-available data and regression models associating AER with housing characteristics, we estimated AER for all Massachusetts residential parcels. We conducted an exposure disparities analysis, considering ambient PM2.5 concentrations and residential AERs. Median AERs (h1) with closed windows for winter and summer were 0.74 (IQR: 0.47–1.09) and 0.36 (IQR: 0.23–0.57), respectively, with lower AERs for single family homes. Across residential parcels, variability of indoor PM2.5 concentrations of ambient origin was twice that of ambient PM2.5 concentrations. Housing parcels above the 90th percentile of both AER and ambient PM2.5 (i.e., the leakiest homes in areas of highest ambient PM2.5)—vs. below the 10 percentile—were located in neighborhoods with higher proportions of Hispanics (20.0% vs. 2.0%), households with an annual income of less than $20,000 (26.0% vs. 7.5%), and individuals with less than a high school degree (23.2% vs. 5.8%). Our approach can be applied in epidemiological studies to estimate exposure modifiers or to characterize exposure disparities that are not solely based on ambient concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zheng T, Zhang J, Sommer K, Bassig BA, Zhang X, Braun J. et al. Effects of environmental exposures on fetal and childhood growth trajectories. Ann Glob. 2016;82:41–99. https://doi.org/10.1016/j.aogh.2016.01.008.

    Article  Google Scholar 

  2. Zhu X, Liu Y, Chen Y, Yao C, Che Z, Cao J. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: a meta-analysis. Environ Sci Pollut Res. 2015;22:3383–96.

    Article  CAS  Google Scholar 

  3. Volk HE, Messer FL, Penfold B, Hertz-Picciotto I, McConnell R. Traffic related air pollution, particulate matter, and autism. JAMA. 2013;70:71–7.

    Google Scholar 

  4. Anderson HR, Favarato G, Atkinson RW. Long-term exposure to air pollution and the incidence of asthma: meta-analysis of cohort studies. Air Qual Atmos Heal. 2013;6:47–56.

    Article  CAS  Google Scholar 

  5. Atkinson RW, Kang S, Anderson HR, Mills IC, Walton HA. Epidemiological time series studies of PM2.5 and daily mortality and hospital admissions: a systematic review and meta-analysis. Thorax. 2014;69:660–5. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4078677&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  6. Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol. 2001;11:231–52. https://indoor.lbl.gov/sites/all/files/lbnl-47713.pdf. Accessed 23 Apr 2017.

    Article  CAS  Google Scholar 

  7. Rauh VA, Landrigan PJ, Claudio L. Housing and health: intersection of poverty and environmental exposures. Ann N Y Acad Sci. 2008;1136:276–88.

    Article  Google Scholar 

  8. Adamkiewicz G, Zota AR, Patricia Fabian M, Chahine T, Julien R, Spengler JD, et al. Moving environmental justice indoors: Understanding structural influences on residential exposure patterns in low-income communities. Am J Public Health. 2011;101(SUPPL. 1):238–45.

    Article  Google Scholar 

  9. Ringquist EJ. Assessing evidence of environmental inequities: a meta-analysis. J Policy Anal Manag. 2005;24:223–47.

    Article  Google Scholar 

  10. Clark LP, Millet DB, Marshall JD. National Patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States. PLoS ONE. 2014;9:e94431.

    Article  Google Scholar 

  11. Pastor M, Sadd J, Hipp J. Which came first? Toxic facilities, minority move-in, and environmental justice. J Urban Aff [Internet] Black Publ, Inc. 2001;23:1–21. https://doi.org/10.1111/0735-2166.00072. Accessed 9 Apr 2017.

    Article  Google Scholar 

  12. Kravitz-Wirtz N, Crowder K, Hajat A, Sass V. The long-term dynamics of racial/ethnic inequality in neighborhood air pollution. Du Bois Rev. 2016;13:237–59.

    Article  Google Scholar 

  13. Wallace LA, Emmerich SJ, Reed CH. Continuous measurements of air change rates in an occupied house for 1 year: the effect of temperature, wind, fans, and windows. J Expo Anal Environ Epidemiol. 2002;12:296–306.

    Article  CAS  Google Scholar 

  14. Yamamoto N, Shendell DG, Winer AM, Zhang J. Residential air exchange rates in three major US metropolitan areas: results from the Relationship Among Indoor, Outdoor, and Personal Air Study 1999 – 2001. Indoor Air. 2010;20:85–90.

    Article  CAS  Google Scholar 

  15. Zota A, Adamkiewicz G, Levy JI, Spengler JD. Ventilation in public housing: implications for indoor nitrogen dioxide concentrations. Indoor Air. 2005;15:393–401.

    Article  CAS  Google Scholar 

  16. Baxter LK, Dionisio KL, Burke J, Sarnat SE, Sarnat JA, Hodas N, et al. Exposure prediction approaches used in air pollution epidemiology studies: key findings and future recommendations. J Expo Sci Environ Epidemiol. 2013;23:654–9. https://www.nature.com/jes/journal/v23/n6/pdf/jes201362a.pdf. Accessed 13 Apr 2017.

    Article  CAS  Google Scholar 

  17. Chan WR, Joh J, Sherman MH. Analysis of air leakage measurements of US houses. Energy Build. 2013;66:616–25. https://doi.org/10.1016/j.enbuild.2013.07.047.

    Article  Google Scholar 

  18. Taylor J, Davies M, Mavrogianni A, Shrubsole C, Hamilton I, Das P. et al. Mapping indoor overheating and air pollution risk modification across Great Britain: a modelling study. Build Environ. 2016;99:1–12.

    Article  Google Scholar 

  19. Shi S, Chen C, Zhao B. Modifications of exposure to ambient particulate matter: Tackling bias in using ambient concentration as surrogate with particle infiltration factor and ambient exposure factor. Environ Pollut. 2017;220:337–47. http://www.sciencedirect.com/science/article/pii/S0269749116314385org/. Accessed Apr 24 2017.

    Article  CAS  Google Scholar 

  20. Brauer M, Lencar C, Tamburic L, Koehoorn M, Demers P, Karr C. A cohort study of traffic-related air pollution impacts on birth outcomes. Environ Health Perspect. 2008;116:680–6.

    Article  Google Scholar 

  21. Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, et al. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect. 2016;124:46–52.

    Article  Google Scholar 

  22. Meng QY, Turpin BJ, Korn L, Weisel CP, Morandi M, Colome S, et al. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: analyses of RIOPA data. J Expo Anal Environ Epidemiol. 2005;15:17–28.

    Article  CAS  Google Scholar 

  23. Smargiassi A, Goldberg MS, Wheeler AJ, Plante C, Valois M-F, Mallach G, et al. Associations between personal exposure to air pollutants and lung function tests and cardiovascular indices among children with asthma living near an industrial complex and petroleum refineries. Environ Res. 2014;132:38–45. http://www.ncbi.nlm.nih.gov/pubmed/24742726. Accessed 10 Jul 2017.

    Article  CAS  Google Scholar 

  24. Breen MS, Breen M, Williams RW, Schultz BD. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina. Environ Sci Technol. 2010;44:9349–56.

    Article  CAS  Google Scholar 

  25. Breen MS, Long TC, Schultz BD, Williams RW, Richmond-Bryant J, Breen M, et al. Air pollution exposure model for individuals (EMI) in health studies: evaluation for ambient PM2.5 in Central North Carolina. Environ Sci Technol. 2015;acs.est.5b02765. https://doi.org/10.1021/acs.est.5b02765

    Article  CAS  Google Scholar 

  26. Sarnat JA, Sarnat SE, Flanders WD, Chang HH, Mulholland J, Baxter L, et al. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta. J Expo Sci Environ Epidemiol. 2013;23:606–15. http://www.ncbi.nlm.nih.gov/pubmed/23778234.

    Article  CAS  Google Scholar 

  27. Chan WR, Nazaroff WW, Price PN, Sohn MD, Gadgil AJ. Analyzing a database of residential air leakage in the United States. Atmos Environ. 2005;39:3445–55.

    Article  CAS  Google Scholar 

  28. Baxter LK, Burke J, Lunden M, Turpin BJ, Rich DQ, Thevenet-Morrison K, et al. Influence of human activity patterns, particle composition and residential air exchange rates on modeled distributions of PM2.5 exposure compared with central-site monitoring data. J Expo Sci Environ Epidemiol. 2013;23:241–7.

    Article  CAS  Google Scholar 

  29. Baxter LK, Stallings C, Burke JM. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling. J Expo Sci Environ Epidemiol. 2016.

  30. MassGIS. MassGIS Datalayers. MassGIS Data - Level 3 Assessors’ Parcel Mapping. 2016. Accessed 25 Oct 2016]. http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-geographic-information-massgis/datalayers/l3parcels.html

  31. Metropolitan Area Planning Council. Massachusetts Land Parcel Database. 2016. http://www.mapc.org/parceldatabase

  32. Fleisch AF, Luttmann-Gibson H, Perng W, Rifas-Shiman SL, Coull BA, Kloog I, et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr Obes. 2016;12:48–57.

    Article  Google Scholar 

  33. Mehta AJ, Zanobetti A, Bind M-AC, Kloog I, Koutrakis P, Sparrow D, et al. Long-term exposure to ambient fine particulate matter and renal function in older men: the Veterans Administration Normative Aging Study. Environ Health Perspect. 2016;124:1353–60. http://www.ncbi.nlm.nih.gov/pubmed/26955062. Accessed 10 July 2017.

    Article  CAS  Google Scholar 

  34. Kloog I, Chudnovsky AA, Just AC, Nordio F, Koutrakis P, Coull BA, et al. A new hybrid spatio-temporal model for estimating daily multi-year PM2.5 concentrations across northeastern USA using high resolution aerosol optical depth data. Atmos Environ. 2014;95:581–90. https://doi.org/10.1016/j.atmosenv.2014.07.014.

    Article  CAS  Google Scholar 

  35. Sherman MH, Grimsrud DT. Infiltration-pressurization correlation: simplified physical modeling. ASHRAE Trans. 1980;86:778–807.

    Google Scholar 

  36. U.S. Energy Information Administration. Residential Energy Consumption Survey (RECS). 2009 RECS Survey Data. 2016. https://www.eia.gov/consumption/residential/data/2009/?src=‹ Accessed 1 Jan 2016.

  37. Fabian MP, Adamkiewicz G, Levy JI. Simulating indoor concentrations of NO2 and PM2.5 in multifamily housing for use in health-based intervention modeling. Indoor Air. 2012;22:12–23.

    Article  CAS  Google Scholar 

  38. Long CM, Suh HH, Catalano PJ, Koutrakis P. Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ Sci Technol. 2001;35:2089–99.

    Article  CAS  Google Scholar 

  39. Baxter LK, Clougherty JE, Laden F, Levy JI. Predictors of concentrations of nitrogen dioxide, fine particulate matter, and particle constituents inside of lower socioeconomic status urban homes. J Expo Sci Environ Epidemiol. 2007;177500532:433–44.

    Article  Google Scholar 

  40. Ratcliffe M, Burd C, Holder K, Fields A. Defining Rural at the U.S. Census Bureau. 2016 https://www2.census.gov/geo/pdfs/reference/ua/Defining_Rural.pdf. Accessed 25 May 2017.

  41. Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120:1699–704.

    Article  CAS  Google Scholar 

  42. Morello-Frosch R, Jesdale BM. Separate and unequal: residential segregation and estimated cancer risks associated with ambient air toxics in U.S. metropolitan areas. Environ Health Perspect. 2006;114:386–93. http://www.ncbi.nlm.nih.gov/pubmed/16507462 Available 21 July 2017.

    Article  CAS  Google Scholar 

  43. Persily A, Musser A, Emmerich SJ. Modeled infiltration rate distributions for U.S. housing. Indoor Air. 2010;20:473–85.

    Article  CAS  Google Scholar 

  44. Ozkaynak H, Baxter LK, Dionisio KL, Burke J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J Expo Sci Environ Epidemiol. 2013;23:566–72. http://www.ncbi.nlm.nih.gov/pubmed/23632992.

    Article  CAS  Google Scholar 

  45. Clougherty JE, Wright RJ, Baxter LK, Levy JI. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants. Environ Heal. 2008;7:17 https://doi.org/10.1186/1476-069X-7-17. Accessed 14 Nov 2016.

    Article  CAS  Google Scholar 

  46. Chen C, Zhao B, Weschler CJ. Indoor exposure to “outdoor PM10”: assessing its influence on the relationship between PM10 and short-term mortality in U.S. Cities. Epidemiol [Internet]. 2012;23:870–8. http://www.ncbi.nlm.nih.gov/pubmed/23018971. Accessed 21 Apr 2017.

    Article  Google Scholar 

  47. Bell ML, Dominici F. Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. Am J Epidemiol. 2008;167:986–97. http://www.ncbi.nlm.nih.gov/pubmed/18303005. Accessed 14 Nov 2016.

    Article  Google Scholar 

  48. Chen C, Zhao B, Weschler CJ. Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in U.S. communities Environ Health Perspect. 2011;120:235–40. http://ehp.niehs.nih.gov/1103970. Accessed 14 Nov 2016.

    Article  Google Scholar 

  49. Levy JI, Chemerynski SM, Sarnat JA. Ozone exposure and mortality: an empirical bayes metaregression analysis. Epidemiology. 2005;16:458–68.

    Article  Google Scholar 

  50. Dionisio KL, Chang HH, Baxter LK. A simulation study to quantify the impacts of exposure measurement error on air pollution health risk estimates in copollutant time-series models. Environ Health. 2016;15:1–10. https://doi.org/10.1186/s12940-016-0186-0.

    Article  CAS  Google Scholar 

  51. Prignon M, Van Moeseke G. Factors influencing airtightness and airtightness predictive models: a literature review. Energy Build. 2017;146:87–97. https://doi.org/10.1016/j.enbuild.2017.04.062.

    Article  Google Scholar 

  52. Logue JM, Sherman MH, Lunden MM, Klepeis NE, Williams R, Croghan C, et al. Development and assessment of a physics-based simulation model to investigate residential PM2.5 infiltration across the US housing stock. Build Environ. 2015;94:21–32. http://www.sciencedirect.com/science/article/pii/S0360132315300482.

    Article  Google Scholar 

  53. Chen C, Zhao B, Weschler CJ. Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in U.S. Communities Environ Health Perspect. 2012;120:235–40. http://ehp.niehs.nih.gov/1103970. Accessed 4 Mar 2018.

    Article  CAS  Google Scholar 

  54. Breen MS, Burke JM, Batterman SA, Vette AF, Godwin C, Croghan CW, et al. Modeling spatial and temporal variability of residential air exchange rates for the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS). Int J Environ Res Public Health. 2014;11:11481–504.

    Article  Google Scholar 

  55. Meng QY, Spector D, Colome S, Turpin B. Determinants of indoor and personal exposure to PM(2.5) of indoor and outdoor origin during the RIOPA study. Atmos Environ. 1994;43:5750–8. http://www.ncbi.nlm.nih.gov/pubmed/20339526. Accessed 25 June 2018.

    Article  Google Scholar 

  56. Abt E, Suh HH, Allen G.Koutrakis P, Characterization of indoor particle sources: a study conducted in the Metropolitan Boston Area. Env Heal Perspect. 2000;108:35–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of Kevin J. Lane and Joel Schwartz, and Na Wang from the Boston University Data Biostatistical and Epidemiology Data Analytic Center and the Massachusetts Area Planning Council for providing parcel data.

Funding

This work was supported by National Institutes of Health [grant number P50 MD010428]; and U.S. Environmental Protection Agency [grant number RD-836156 and T32 ES014562]. Although the manuscript was reviewed by the U.S. EPA and approved for publication, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Rosofsky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosofsky, A., Levy, J.I., Breen, M.S. et al. The impact of air exchange rate on ambient air pollution exposure and inequalities across all residential parcels in Massachusetts. J Expo Sci Environ Epidemiol 29, 520–530 (2019). https://doi.org/10.1038/s41370-018-0068-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-018-0068-3

Keywords

This article is cited by

Search

Quick links